Skip to main content

Impact of Microplastics on Reproductive and Physiological Aspects of Aquatic Inhabitants

  • Chapter
  • First Online:
Xenobiotics in Aquatic Animals

Abstract

Environmental changes induced by humans pose a continuous threat for the natural freshwater ecosystems, and all this has a detrimental effect on the biotic communities. Organisms inhabiting freshwater ecosystems are more sensitive to changes in environmental conditions due to the unique conditions of such ecosystems. For the protection and management of ecological diversity, the quality of the water of an area is of remarkable concern as it gets polluted due to the release of various contaminants such as pesticides, disinfectants, heavy metals, microplastics, drugs, chemicals, and oil mixtures. Pollution due to microplastics has gained concern over the last few decades. This existence of microplastics in the aquatic ecosystem poses a significant risk to the aquatic inhabitants and even to the human health as they play a pivotal role in food chains. Multitudinous research has highlighted the accumulation of this xenobiotic compound in the gastrointestinal tract, gills, and hepatopancreas of aquatic inhabitants. The existence of microplastics in an ecosystem is a worldwide problem due to their toxic effects on fish and shellfish. These organisms experience various health issues such as oxidative stress, alterations in the immune system, neurotoxicity, retarded growth, hormonal disruption, behavioral changes, and damage to reproductive organs due to exposure to xenobiotics and other such compounds. In medaka fish, analysis of mRNA sequencing has depicted that bioaccumulation of microplastics alters the expression of genes involved in brain development, metabolic processes, and cell adhesion. With an increase in pollution levels in aquatic systems, these xenobiotics have accumulated in the crustaceans where they disrupt the normal molting process. These chemical residues get amassed in the tissues of living organisms and thus have profound effects on the health of an ecosystem. It is the need of the hour to modulate the existence and distribution of xenobiotics in an aquatic ecosystem. Therefore, the continuous monitoring of the pollutants along with the development of knowledge about the interrelationship between the concentration of xenobiotics and their adverse effects is a requisite for the accurate assessment of such chemicals in the natural ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbay İK, Özdemir T (2016) Monomer migration and degradation of polycarbonate via UV-C irradiation within aquatic and atmospheric environments. J Macromol Sci A 53(6):340–345

    Article  CAS  Google Scholar 

  • Alimba CG, Faggio C (2019) Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol 68:61–74

    Article  CAS  PubMed  Google Scholar 

  • Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci 364(1526):1977–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryani D, Khalifa MA, Herjayanto M, Solahudin EA, Rizki EM, Halwatiyah W, Istiqomah H, Maharani SH, Wahyudin H, Pratama G (2021) Penetration of microplastics (polyethylene) to several organs of Nile tilapia (Oreochromis niloticus). In: IOP conference series: earth and environmental science, vol 715, no 1. IOP Publishing, p 012061

    Google Scholar 

  • Assas M, Qiu X, Chen K, Ogawa H, Xu H, Shimasaki Y, Oshima Y (2020) Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish. Mar Pollut Bull 158:111446

    Article  CAS  PubMed  Google Scholar 

  • Atamanalp M, Köktürk M, Uçar A, Duyar HA, Özdemir S, Parlak V, Esenbuğa N, Alak G (2021) Microplastics in tissues (brain, gill, muscle and gastrointestinal) of Mullus barbatus and Alosa immaculata. Arch Environ Contam Toxicol 81(3):460–469

    Article  CAS  PubMed  Google Scholar 

  • Atashgahi S, Sánchez-Andrea I, Heipieper HJ, van der Meer JR, Stams AJM, Smidt H (2018) Prospects for harnessing biocide resistance for bioremediation and detoxification. Science 360(6390):743–746. https://doi.org/10.1126/science.aar3778

    Article  CAS  PubMed  Google Scholar 

  • Au SY, Bruce TF, Bridges WC, Klaine SJ (2015) Responses of Hyalella azteca to acute and chronic microplastic exposure. Environ Toxicol Chem 34:2564–2572

    Article  CAS  PubMed  Google Scholar 

  • Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, D’Errico G, Pauletto G, Bargelloni L, Regoli F (2015a) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222

    Article  CAS  PubMed  Google Scholar 

  • Avio CG, Gorbi S, Regoli F (2015b) Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Mar Environ Res 111:18–26

    Article  CAS  PubMed  Google Scholar 

  • Barboza LG, Vieira LR, Branco V, Carvalho C, Guilhermino L (2018a) Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Sci Rep 8(1):1–9

    Article  Google Scholar 

  • Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L (2018b) Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol 195:49–57

    Article  CAS  PubMed  Google Scholar 

  • Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Guilhermino L (2020) Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 717:134625. https://doi.org/10.1016/j.scitotenv.2019.134625

    Article  CAS  PubMed  Google Scholar 

  • Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batel A, Borchert F, Reinwald H, Erdinger L, Braunbeck T (2018) Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos. Environ Pollut 235:918–930

    Article  CAS  PubMed  Google Scholar 

  • Borrelle SB, Rochman CM, Liboiron M, Bond AL, Lusher A, Bradshaw H et al (2017) Opinion: why we need an international agreement on marine plastic pollution. Proc Natl Acad Sci U S A 114(38):9994–9997. https://doi.org/10.1073/pnas.1714450114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, Murphy E, Jambeck J, Leonard GH, Hilleary MA, Eriksen M, Possingham HP, De Frond H, Gerber LR, Polidoro B, Tahir A, Bernard M, Mallos N, Barnes M, Rochman CM (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369(6510):1515–1518. https://doi.org/10.1126/science.aba3656

    Article  CAS  PubMed  Google Scholar 

  • Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23:2388–2392

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Gundlach M, Yang S, Jiang J, Velki M, Yin D, Hollert H (2017) Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci Total Environ 584-585:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Allgeier A, Yin D, Hollert H (2019) Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ Int 130:104938

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Feng Q, Wang J (2020) Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504

    Article  CAS  PubMed  Google Scholar 

  • Chisada S, Yoshida M, Karita K (2019) Ingestion of polyethylene microbeads affects the growth and reproduction of medaka, Oryzias latipes. Environ Pollut 254(Pt B):113094

    Article  CAS  PubMed  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49(2):1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Zhang S, Razanajatovo RM, Zou H, Zhu W (2018) Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ Pollut 238:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Huang Y, Liu S, Zhang S, Zou H, Wang Z, Zhu W, Geng J (2020) Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless? J Hazard Mater 396:122693

    Article  CAS  PubMed  Google Scholar 

  • Duan Z, Duan X, Zhao S, Wang X, Wang J, Liu Y, Peng Y, Gong Z, Wang L (2020) Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. J Hazard Mater 395:122621

    Article  CAS  PubMed  Google Scholar 

  • Espinosa C, Esteban MÁ, Cuesta A (2016) Microplastics in aquatic environments and their toxicological implications for fish. Toxicology–new aspects to this scientific conundrum. InTech, Rijeka, pp 113–145

    Google Scholar 

  • Fadare OO, Wan B, Zhao L, Guo LH (2020) Microplastics from consumer plastic food containers: are we consuming it? Chemosphere 253:126787

    Article  CAS  PubMed  Google Scholar 

  • Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis(L.) to Carcinus maenas (L.). Environ Pollut 177:1–3

    Article  CAS  PubMed  Google Scholar 

  • Fonte E, Ferreira P, Guilhermino L (2016) Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation. Aquat Toxicol 180:173–185

    Article  CAS  PubMed  Google Scholar 

  • Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D (2018) Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environ Sci Eur 30:13. https://doi.org/10.1186/s12302-018-0139-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambardella C, Morgana S, Ferrando S, Bramini M, Piazza V, Costa E, Garaventa F, Faimali M (2017) Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol Environ Saf 145:250–257

    Article  CAS  PubMed  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory MR (2009) Environmental implications of plastic debris in marine settings: entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc Lond B Biol Sci 364:2013–2025

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerranti C, Martellini T, Perra G, Scopetani C, Cincinelli A (2019) Microplastics in cosmetics: environmental issues and needs for global bans. Environ Toxicol Pharmacol 68:75–79

    Article  CAS  PubMed  Google Scholar 

  • Guven O, Bach L, Munk P, Dinh KV, Mariani P, Nielsen TG (2018) Microplastic does not magnify the acute effect of PAH pyrene on predatory performance of a tropical fish (Lates calcarifer). Aquat Toxicol 198:287–293

    Article  CAS  PubMed  Google Scholar 

  • Hamed M, Soliman HAM, Osman AGM, Sayed AEDH (2019) Assessment the effect of exposure to microplastics in Nile Tilapia (Oreochromis niloticus) early juvenile: I. blood biomarkers. Chemosphere 228:345–350

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish - a mechanistic analysis. Ecotoxicology 17:396–409

    Article  CAS  PubMed  Google Scholar 

  • Hatami M, Banaee M, Nematdoost Haghi B (2019) Sub-lethal toxicity of chlorpyrifos alone and in combination with polyethylene glycol to common carp (Cyprinus carpio). Chemosphere 219:981–988

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060–3075. https://doi.org/10.1021/es2031505

    Article  CAS  PubMed  Google Scholar 

  • Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E (2017) Large microplastic particles in sediments of tributaries of the river Thames, UK – abundance, sources and methods for effective quantification. Mar Pollut Bull 114:218–226

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Song B, Liang J, Niu Q, Zeng G, Shen M et al (2021) Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J Hazard Mater 405:124187. https://doi.org/10.1016/j.jhazmat.2020.124187

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Chu TW, Kuo CH, Hong MC, Chen YY, Chen B (2022) Effects of microplastics on reproduction and growth of freshwater live feeds Daphnia magna. Aust Fish 7:181. https://doi.org/10.3390/fishes7040181

    Article  Google Scholar 

  • Iheanacho SC, Odo GE (2020) Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comp Biochem Physiol C Toxicol Pharmacol 232:108741

    Article  CAS  PubMed  Google Scholar 

  • Ismail RF, Saleh NE, Sayed AE (2021) Impacts of microplastics on reproductive performance of male tilapia (Oreochromis niloticus) pre-fed on Amphora coffeaeformis. Environ Sci Pollut Res 28(48):68732–68744

    Article  Google Scholar 

  • Jabeen K, Su L, Li J, Yang D, Tong C, Mu J, Shi H (2017) Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ Pollut 221:141–149

    Article  CAS  PubMed  Google Scholar 

  • Jabeen K, Li B, Chen Q, Su L, Wu C, Hollert H, Shi H (2018) Effects of virgin microplastics on goldfish (Carassius auratus). Chemosphere 213:323–332. https://doi.org/10.1016/j.chemosphere.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  CAS  PubMed  Google Scholar 

  • Jeong J, Choi J (2019) Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere 231:249–255

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Xia J, Pan Z, Yang J, Wang W, Fu Z (2018) Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ Pollut 235:322–329

    Article  CAS  PubMed  Google Scholar 

  • Jovanović B (2017) Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr Environ Assess Manag 13(3):510–515

    Article  PubMed  Google Scholar 

  • Kannan K, Vimalkumar K (2021) A review of human exposure to microplastics and insights into microplastics as obesogens. Front Endocrinol 12:724989. https://doi.org/10.3389/fendo.2021.724989

    Article  Google Scholar 

  • Karami A, Romano N, Galloway T, Hamzah H (2016) Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus). Environ Res 151:58–70

    Article  CAS  PubMed  Google Scholar 

  • Koongolla JB, Lin L, Pan YF, Yang CP, Sun DR, Liu S, Xu XR, Maharana D, Huang JS, Li HX (2020) Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ Pollut 258:113734

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva TN, Shtofer LL, Stukalov SY, Spektor LA, Chernov IV (2019) Ecological safety and hazards to public health: the search for balance within the “human-biosphere” system. Ekoloji 28(107):5039–5043

    Google Scholar 

  • LaPlaca SB, van den Hurk P (2020) Toxicological effects of micronized tire crumb rubber on mummichog (Fundulus heteroclitus) and fathead minnow (Pimephales promelas). Ecotoxicology 29:524–534

    Article  CAS  PubMed  Google Scholar 

  • Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D (2018) Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 619–620:1–8

    Article  PubMed  Google Scholar 

  • Li Y, Wang J, Yang G, Lu L, Zheng Y, Zhang Q, Zhang X, Tian H, Wang W, Ru S (2020) Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma). J Hazard Mater 385:121586

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sun Y, Li J, Tang R, Miu Y, Ma X (2021) Research on the influence of microplastics on marine life. 3rd international conference on air pollution and environmental engineering IOP conference series: earth and environmental science, vol 631. p 012006

    Google Scholar 

  • Limonta G, Mancia A, Benkhalqui A, Bertolucci C, Abelli L, Fossi MC, Panti C (2019) Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Sci Rep 9(1):1–1. https://doi.org/10.1038/s41598-019-52292

    Article  CAS  Google Scholar 

  • Lönnstedt OM, Eklöv P (2016) Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352:1213–1316. https://doi.org/10.1126/science.aad8828

    Article  CAS  PubMed  Google Scholar 

  • Lozano RL, Mouat J (2009) Marine litter in the North-East Atlantic region: assessment and priorities for response. KIMO International

    Google Scholar 

  • Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science and Technology 50:4054–4060. https://doi.org/10.1021/acs.est.6b00183

    Article  CAS  PubMed  Google Scholar 

  • Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67:94–99

    Article  CAS  PubMed  Google Scholar 

  • Lusher A, Hollman P, Mendoza-Hill J (2017) Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper 615

    Google Scholar 

  • Magni S, Della Torre C, Garrone G, D’Amato A, Parenti CC, Binelli A (2019) First evidence of protein modulation by polystyrene microplastics in a freshwater biological model. Environ Pollut 250:407–415

    Article  CAS  PubMed  Google Scholar 

  • Mak CW, Yeung KCF, Chan KM (2019) Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol Environ Saf 182:1–10

    Article  Google Scholar 

  • Mazurais D, Ernande B, Quazuguel P, Severe A, Huelvan C, Madec L, Mouchel O, Soudant P, Robbens J, Huvet A, Zambonino-Infante J (2015) Evaluation of the impact of polyethylene mi-crobeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Mar Environ Res 112:78–85

    Article  CAS  PubMed  Google Scholar 

  • Mizraji R, Ahrendt C, Perez-Venegas D, Vargas J, Pulgar J, Aldana M, Patricio Ojeda F, Duarte C, Galbán-Malagón C (2017) Is the feeding type related with the content of microplastics in intertidal fish gut? Mar Pollut Bull 116(1–2):498–500. https://doi.org/10.1016/j.marpolbul.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  • Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108:131–139

    Article  CAS  PubMed  Google Scholar 

  • Nelms SE, Galloway TS, Godley BJ, Jarvis DS, Lindque PK (2018) Investigating microplastic trophic transfer in marine top predators. Environ Pollut 238:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Oliveira M, Almeida M, Miguel I (2019) A micro(nano)plastic boomerang tale: a never ending story? Trends Anal Chem 112:196. https://doi.org/10.1016/j.trac.2019.01.005

    Article  CAS  Google Scholar 

  • Pan Z, Zhang C, Wang S, Sun D, Zhou A, Xie S, Xu G, Zou J (2021) Occurrence of microplastics in the gastrointestinal tract and gills of fish from Guangdong, South China. J Mar Sci Eng 9:981. https://doi.org/10.3390/jmse9090981

    Article  Google Scholar 

  • Pannetier P, Morin B, Le Bihanic F, Dubreil L, Clérandeau C, Chouvellon F, Van Arkel K, Danion M, Cachot J (2020) Environmental samples of microplastics induce significant toxic effects in fish larvae. Environ Int 134:105047

    Article  CAS  PubMed  Google Scholar 

  • Parker B, Andreou D, Green ID, Britton JR (2021) Microplastics in freshwater fishes: occurrence, impacts and future perspectives. Fish Fish 22(3):467–488

    Article  Google Scholar 

  • Pinto da Costa J, Reis V, Paço A, Costa M, Duarte AC, Rocha-Santos T (2019) Micro(nano)plastics–analytical challenges towards risk evaluation. Trends Anal Chem 111:173–184. https://doi.org/10.1016/j.trac.2018.12.013

    Article  CAS  Google Scholar 

  • Pitt JA, Trevisan R, Massarsky A, Kozal JS, Levin ED, Di Giulio RT (2018) Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene. Sci Total Environ 643(1):324–334. https://doi.org/10.1016/j.scitotenv.2018.06.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plastics Europe (2010) Plastics – the facts 2010

    Google Scholar 

  • Plastics Europe (2015) Plastics-the facts 2014/2015, an analysis of European plastics production, demand and waste data. Plastics Europe, Brussels, Belgium

    Google Scholar 

  • Qiang L, Cheng J (2019) Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio). Ecotoxicol Environ Saf 176:226–233

    Article  CAS  PubMed  Google Scholar 

  • Qiang L, Cheng J (2021) Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio). Chemosphere 263:128161

    Article  CAS  PubMed  Google Scholar 

  • Rainieri S, Conlledo N, Larsen BK, Granby K, Barranco A (2018) Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environ Res 162:135–143

    Article  CAS  PubMed  Google Scholar 

  • Rather MA, Basha SH, Bhat IA, Sharma N, Nandanpawar P, Badhe M et al (2017) Characterization, molecular docking, dynamics simulation and metadynamics of kisspeptin receptor with kisspeptin. Int J Biol Macromol 101:241–253

    Article  CAS  PubMed  Google Scholar 

  • Rios Mendoza LM, Karapanagioti H, Álvarez NR (2018) Micro(nanoplastics) in the marine environment: current knowledge and gaps. Curr Opin Environ Sci Health 1:47–51. https://doi.org/10.1016/J.COESH.2017.11.004

    Article  Google Scholar 

  • Rochman C, Kurobe T, Flores I, Teh SJ (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661

    Article  CAS  PubMed  Google Scholar 

  • Rochman CM, Anna-Marie Cook AM, Koelmans AA (2016) Plastic debris and policy: using current scientific understanding to invoke positive change. Environ Toxicol Chem 35:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Romano N, Ashikin M, Teh JC, Syukri F, Karami A (2018) Effects of pristine polyvinyl chloride fragments on whole body histology and protease activity in silver barb Barbodes gonionotus fry. Environ Pollut 237:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    Article  CAS  PubMed  Google Scholar 

  • Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83

    Article  PubMed  Google Scholar 

  • Strungaru SA, Jijie R, Nicoara M, Plavan G, Faggio C (2019) Micro-(nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology. Trends Anal Chem 110:116–128

    Article  CAS  Google Scholar 

  • Sundaray JK, Rather MA, Kumar S, Agarwal D (2021) Recent updates in molecular endocrinology and reproductive physiology of fish. Springer, Singapore

    Book  Google Scholar 

  • Sutherland WJ, Broad S, Caine J, Clout M, Dicks LV, Doran H, Entwistle AC, Fleishman E, Gibbons DW, Keim B, LeAnstey B, Lickorish FA, Markillie P, Monk KA, Mortimer D, Ockendon N, Pearce-Higgins JW, Peck LS, Pretty J, Rockström J, Spalding MD, Tonneijck FH, Wintle BC, Wright KE (2016) A horizon scan of global conservation issues for 2016. Trends Ecol Evol 31(1):44–53. https://doi.org/10.1016/j.tree.2015.11.007

    Article  PubMed  Google Scholar 

  • Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2027–2045. https://doi.org/10.1098/rstb.2008.0284

    Article  CAS  Google Scholar 

  • Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci 364:2153–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner J, Wang ZM, Ghosal S, Rochman C, Gassel M, Wall S (2017) Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Anal Methods 9:1479–1490

    Article  CAS  Google Scholar 

  • Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu Z, Jin Y (2019) Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere 217:646–658

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li Y, Lu L, Zheng M, Zhang X, Tian H, Wang W, Ru S (2019) Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ Pollut 254:113024. https://doi.org/10.1016/j.envpol.2019.113024

    Article  CAS  PubMed  Google Scholar 

  • Watts AJR, Urbina MA, Goodhead R, Moger J, Lewis C, Galloway TS (2016) Effect of microplastic on the gills of the shore crab Carcinus maenas. Environ Sci Technol 50:5364–5369

    Article  CAS  PubMed  Google Scholar 

  • Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Sun M, Zhou M, Chang Z, Li L (2020) Polyvinyl chloride microplastics induce growth inhibition and oxidative stress in Cyprinus carpio var. larvae. Sci Total Environ 716:136479

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Chen B, Xia B, Shi X, Qu K (2018) Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mater 15(360):97–105

    Article  Google Scholar 

  • Zhao Y, Bao Z, Wan Z, Fu Z, Jin Y (2020) Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. Sci Total Environ 710:136279

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZL, Wang SC, Zhao FF, Wang SG, Liu FF, Liu GZ (2019) Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ Pollut 246:509–517. https://doi.org/10.1016/j.envpol.2018.12.044

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chernick M, Rittschof D, Hinton DE (2020) Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes). Aquat Toxicol 220:105396

    Article  CAS  PubMed  Google Scholar 

  • Zitouni N, Bousserrhine N, Belbekhouche S, Missawi O, Alphonse V, Boughatass I, Banni M (2020) First report on the presence of small microplastics (≤ 3 μm) in tissue of the commercial fish Serranus scriba (Linnaeus, 1758) from Tunisian coasts and associated cellular alterations. Environ Pollut 263:114576

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhar, M., Jasrotia, R., Langer, S., Suwartiningsih, N. (2023). Impact of Microplastics on Reproductive and Physiological Aspects of Aquatic Inhabitants. In: Rather, M.A., Amin, A., Hajam, Y.A., Jamwal, A., Ahmad, I. (eds) Xenobiotics in Aquatic Animals. Springer, Singapore. https://doi.org/10.1007/978-981-99-1214-8_6

Download citation

Publish with us

Policies and ethics