Skip to main content

Hydrogen Fuel Cell Hybrid Technology in Aviation: An Overview

  • Conference paper
  • First Online:
Recent Advances in Mechanical Engineering (FLAME 2022)

Abstract

According to the International Air Transport Association (IATA), the industry has improved its record of fuel efficiency: Fuel burned per passenger per kilometer has dropped by half since 1990. This case study aims to find a powerful and efficient propulsion system that runs on renewable resources. We’ll dive deep into the study of fuel cells, particularly solid oxide fuel cells for their fuel-to-energy conversion ratio and close to no emissions. This study will help us understand what fuel cell design, where it’ll be installed, materials of the cathode, and anode. Different materials for electrolytes will be compared to analyze each of their impact on a flight’s performance which can drastically reduce the price per ticket and make air travel much more economical and environmentally clean. What storage method will be preferred for space efficiency, more capacity to reduce travel time by fueling just once, and to keep hydrogen safe from igniting itself. Fuel cells are still a work in progress due to their lack of instant power, so engineers combined them with a gas turbine creating a hybrid setup that achieves an amazing efficiency. Airlines such as Airbus, Eviation, and Zunum Aero are working on all-electric aircraft (AEA) where their planes are powered by hydrogen fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedrich KA, Kallo J, Schirmer J, Schmitthals G (2009) Fuel cell systems for aircraft application. ECS Trans 25(1):193

    Article  CAS  Google Scholar 

  2. Mills GL, Buchholtz B, Olsen A (2012) Design, fabrication, and testing of a liquid hydrogen fuel tank for a long-duration aircraft. In: AIP conference proceedings, vol 1434, no 1, pp 773–780. American Institute of Physics

    Google Scholar 

  3. Lapeña-Rey N, Mosquera J, Bataller E, Ortí F (2010) First fuel-cell manned aircraft. J Aircr 47(6):1825–1835

    Article  Google Scholar 

  4. Verstraete D (2013) Long-range transport aircraft using hydrogen fuel. Int J Hydrogen Energy 38(34):14824–14831

    Article  CAS  Google Scholar 

  5. Gomez A, Smith H (2019) Liquid hydrogen fuel tanks for commercial aviation: structural sizing and stress analysis. Aerosp Sci Technol 95:105438

    Article  Google Scholar 

  6. Rajashekara K, Grieve J, Daggett D (2008) Hybrid fuel cell power in aircraft. IEEE Ind Appl Mag 14(4):54–60

    Article  Google Scholar 

  7. Sarkar A, Banerjee R (2005) Net energy analysis of hydrogen storage options. Int J Hydrogen Energy 30(8):867–877

    Article  CAS  Google Scholar 

  8. Bauman J, Kazerani M (2009) An analytical optimization method for improved fuel cell–battery–ultracapacitor powertrain. IEEE Trans Veh Technol 58(7):3186–3197

    Article  Google Scholar 

  9. Liu W, Sun L, Li Z, Fujii M, Geng Y, Dong L, Fujita T (2020) Trends and future challenges in hydrogen production and storage research. Environ Sci Pollut Res 27(25):31092–31104

    Article  CAS  Google Scholar 

  10. Van Hook JP (1980) Methane-steam reforming. Catal Rev Sci Eng 21(1):1–51

    Google Scholar 

  11. Ameta R, Solanki MS, Benjamin S, Ameta SC (2018) Photocatalysis. In: Advanced oxidation processes for wastewater treatment, pp 135–175. Academic Press

    Google Scholar 

  12. Chamousis R (2009) Hydrogen: fuel of the future. The scientific research society, for the opportunity to present this research

    Google Scholar 

  13. Felseghi RA, Carcadea E, Raboaca MS, Trufin CN, Filote C (2019) Hydrogen fuel cell technology for the sustainable future of stationary applications. Energies 12(23):4593

    Article  CAS  Google Scholar 

  14. Møller KT, Jensen TR, Akiba E, Li HW (2017) Hydrogen-A sustainable energy carrier. Progress Nat Sci Mater Int 27(1):34–40

    Article  Google Scholar 

  15. Baykara SZ (2018) Hydrogen: A brief overview on its sources, production and environmental impact. Int J Hydrogen Energy 43(23):10605–10614

    Article  CAS  Google Scholar 

  16. Marbán G, Valdés-Solís T (2007) Towards the hydrogen economy? Int J Hydrogen Energy 32(12):1625–1637

    Article  Google Scholar 

  17. Ajanovic A, Haas R (2021) Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int J Hydrogen Energy 46(16):10049–10058

    Article  CAS  Google Scholar 

  18. Pudukudy M, Yaakob Z, Mohammad M, Narayanan B, Sopian K (2014) Renewable hydrogen economy in Asia–opportunities and challenges: an overview. Renew Sustain Energy Rev 30:743–757

    Article  Google Scholar 

  19. Peng J, Huang J, Wu XL, Xu YW, Chen H, Li X (2021) Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis, and health control: a review. J Power Sources 505:230058

    Article  CAS  Google Scholar 

  20. Boldrin P, Brandon NP (2019) Progress and outlook for solid oxide fuel cells for transportation applications. Nat Catal 2(7):571–577

    Article  CAS  Google Scholar 

  21. Yang G, Su C, Shi H, Zhu Y, Song Y, Zhou W, Shao Z (2020) Toward reducing the operation temperature of solid oxide fuel cells: our past 15 years of efforts in cathode development. Energy Fuels 34(12):15169–15194

    Article  CAS  Google Scholar 

  22. Dokiya M (2002) SOFC system and technology. Solid State Ionics 152:383–392

    Article  Google Scholar 

  23. Kim T, Kwon S (2012) Design and development of a fuel cell-powered small unmanned aircraft. Int J Hydrogen Energy 37(1):615–622

    Article  CAS  Google Scholar 

  24. Lyu Y, Xie J, Wang D, Wang J (2020) Review of cell performance in solid oxide fuel cells. J Mater Sci 55(17):7184–7207

    Article  CAS  Google Scholar 

  25. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337

    Article  CAS  Google Scholar 

  26. Sreedhar I, Agarwal B, Goyal P, Singh SA (2019) Recent advances in material and performance aspects of solid oxide fuel cells. J Electroanal Chem 848:113315

    Article  CAS  Google Scholar 

  27. Ma Q, Peng R, Lin Y, Gao J, Meng G (2006) A high-performance ammonia-fueled solid oxide fuel cell. J Power Sources 161(1):95–98

    Article  CAS  Google Scholar 

  28. Ivers-Tiffée E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC-components. J Eur Ceram Soc 21(10–11):1805–1811

    Article  Google Scholar 

  29. Mizutani Y, Tamura M, Kawai M, Yamamoto O (1994) Development of high-performance electrolyte in SOFC. Solid State Ionics 72:271–275

    Article  CAS  Google Scholar 

  30. Fallah Vostakola M, Amini Horri B (2021) Progress in material development for low-temperature solid oxide fuel cells: a review. Energies 14(5):1280

    Article  Google Scholar 

  31. Ren G, Wang H, Chen C, Wang J (2021) An energy conservation and environmental improvement solution-ultra-capacitor/battery hybrid power source for vehicular applications. Sustain Energy Technol Assess 44:100998

    Google Scholar 

  32. Bauman J, Kazerani M (2008) A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell–battery–ultracapacitor vehicles. IEEE Trans Veh Technol 57(2):760–769

    Article  Google Scholar 

  33. Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91(4):157–172

    Article  PubMed  Google Scholar 

  34. Hassan IA, Ramadan HS, Saleh MA, Hissel D (2021) Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renew Sustain Energy Rev 149:111311

    Article  CAS  Google Scholar 

  35. Caglayan DG, Weber N, Heinrichs HU, Linßen J, Robinius M, Kukla PA, Stolten D (2020) Technical potential of salt caverns for hydrogen storage in Europe. Int J Hydrogen Energy 45(11):6793–6805

    Article  CAS  Google Scholar 

  36. Aceves SM, Petitpas G, Espinosa-Loza F, Matthews MJ, Ledesma-Orozco E (2013) Safe, long range, inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels. Int J Hydrogen Energy 38(5):2480–2489

    Google Scholar 

  37. Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem 20(4):1148–1156

    Article  CAS  Google Scholar 

  38. Hosseini SE, Butler B (2020) An overview of development and challenges in hydrogen powered vehicles. Int J Green Energy 17(1):13–37

    Article  CAS  Google Scholar 

  39. Liu Y, Sun X, Sethi V, Nalianda D, Li YG, Wang L (2017) Review of modern low emissions combustion technologies for aero gas turbine engines. Prog Aerosp Sci 94:12–45

    Article  Google Scholar 

  40. Collins JM, McLarty D (2020) All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids. Appl Energy 265:114787

    Article  Google Scholar 

  41. Contreras A, Yiğit S, Özay K, Veziroğlu TN (1997) Hydrogen as aviation fuel: a comparison with hydrocarbon fuels. Int J Hydrogen Energy 22(10–11):1053–1060

    Article  CAS  Google Scholar 

  42. Gnadt AR, Speth RL, Sabnis JS, Barrett SR (2019) Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Prog Aerosp Sci 105:1–30

    Article  Google Scholar 

  43. Baharozu E, Soykan G, Ozerdem MB (2017) Future aircraft concept in terms of energy efficiency and environmental factors. Energy 140:1368–1377

    Article  Google Scholar 

  44. Rondinelli S, Gardi A, Kapoor R, Sabatini R (2017) Benefits and challenges of liquid hydrogen fuels in commercial aviation. Int J Sustain Aviation 3(3):200–216

    Article  Google Scholar 

  45. Bradley TH, Moffitt BA, Mavris DN, Parekh DE (2007) Development and experimental characterization of a fuel cell powered aircraft. J Power Sources 171(2):793–801

    Article  CAS  Google Scholar 

  46. Nojoumi H, Dincer I, Naterer GF (2009) Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion. Int J Hydrogen Energy 34(3):1363–1369

    Article  CAS  Google Scholar 

  47. Verstraete D (2015) On the energy efficiency of hydrogen-fuelled transport aircraft. Int J Hydrogen Energy 40(23):7388–7394

    Article  CAS  Google Scholar 

  48. Bruce S, Temminghoff M, Hayward J, Palfreyman D, Munnings C, Burke N, Creasey S (2020) Opportunities for hydrogen in aviation

    Google Scholar 

  49. Charles MB, Barnes P, Ryan N, Clayton J (2007) Airport futures: towards a critique of the aerotropolis model. Futures 39(9):1009–1028

    Article  Google Scholar 

  50. Dichter A, Henderson K, Riedel R, Riefer D (2020) How airlines can chart a path to zero-carbon flying. McKinsey & Company, Chicago

    Google Scholar 

  51. Singh L, Dubey K, Gupta S, Katiyar R (2023) An investigation on waste plastic materials for hydro carbon fuel production using alternative energy sources. In Recent Advances in Material, Manufacturing, and Machine Learning: Proceedings of 1st International Conference (RAMMML-22), Volume 1 (pp 1–7). CRC Press

    Google Scholar 

  52. Singh L, Kumar S, Raj S, Badhani P (2021) Aluminium metal matrix composites: manufacturing and applications. In: IOP conference series: materials science and engineering, vol 1149, no 1, p 012025. IOP Publishing

    Google Scholar 

  53. Singh L, Kumar S, Raj S, Badhani P (2021) Development and characterization of aluminium silicon carbide composite materials with improved properties. Mater Today Proc 46:6733–6736

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavepreet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, L., Nafees, A., Dubey, K. (2023). Hydrogen Fuel Cell Hybrid Technology in Aviation: An Overview. In: Shukla, A.K., Sharma, B.P., Arabkoohsar, A., Kumar, P. (eds) Recent Advances in Mechanical Engineering. FLAME 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-1894-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1894-2_67

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1893-5

  • Online ISBN: 978-981-99-1894-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics