Skip to main content

Lie Group Representations On Polynomial Rings

  • Chapter
  • First Online:
Collected Papers
  • 2357 Accesses

Abstract

Let G be a group of linear transformations on a finite dimensional real or complex vector space X. Assume X is completely reducible as a G-module. Let S be the ring of all complex-valued polynomials on X, regarded as a G-module in the obvious way, and let J ? S be the subring of all G-invariant polynomials on X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Cloth bound cover Book
USD 249.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Chevalley, Fondements de las géométric algébrique, Course notes at the Institut Henri Poincaré, Paris, 1958.

    Google Scholar 

  4. A. J. Coleman, The Betti numbers of the simple Lie groups, Canad. J. Math. 10 (1958), 349–356.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111–244.

    MATH  Google Scholar 

  6. F. Gantmacher, Canonical representation of automorphisms of a complex semi-simple Lie group, Mat. Sb. 47 (1939), 104–146.

    Google Scholar 

  7. Harish-Chandra, On a lemma of F. Bruhat, J. Math. Pures Appl. (9) 35 (1956), 203–210.

    MathSciNet  MATH  Google Scholar 

  8. Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Hochschild and G. D. Mostow, Representations and representative functions on Lie groups. III, Ann. of Math. (2) 70 (1959), 85–100.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Helgason, Some results in variant theory, Bull. Amer. Math. Soc. 68 (1962), 367–371.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Jacobson, Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105–133.

    Google Scholar 

  12. B. Kostant, A formula for the multiplicity of a weight, Trans. Amer. Math. Soc. 93 (1959), 53–73.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Kostant, The principal three-dimensional subgroup and the Bette numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc. 101 (1961), 211–223.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. P. Serre, Faisceaux algebriques coherent, Ann. of Math. (2) 61 (1955), 197–278.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Seidenberg, The hyperplane sections of normal varieties, Trans. Amer. Math. Soc. 64 (1950), 357–386.

    Article  MathSciNet  Google Scholar 

  17. R. Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616–618.

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand, Princeton, N. J., 1958.

    MATH  Google Scholar 

  19. O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand, Princeton, N. J., 1960.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Kostant .

Editor information

Editors and Affiliations

Additional information

Communicated by Raoul Bott, February 1, 1963

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Kostant, B. (2009). Lie Group Representations On Polynomial Rings. In: Joseph, A., Kumar, S., Vergne, M. (eds) Collected Papers. Springer, New York, NY. https://doi.org/10.1007/b94535_16

Download citation

Publish with us

Policies and ethics