Skip to main content
Log in

Growth of the teleost eye: novel solutions to complex constraints

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

The cichlid fish, Haplochromis burtoni, is highly dependent on vision for survival in its natural habitat. As is true of most teleost fishes, the eyes continue to grow throughout life without any obvious changes in visual capability. In H. burtoni, for example, retinal area may increase by 27 × in just 6 months. During growth, there is no obvious change in the visual sensitivity, visual acuity or lens quality which must all be appropriate for the enlarging eye. This requires that during growth competing constraints be met. For example, to maintain visual acuity, the number of ganglion cells per visual angle subtended on the retina must remain the same as must the convergence ratio of the cones onto those ganglion cells. In contrast, to maintain visual sensitivity, the number of rod photoreceptors per unit retinal area must remain the same. These requirements are in conflict since a larger eye may preserve acuity with fewer cells per unit area in a larger retina. In addition, the lens properties must remain the same as the animal increases in size so that the image available is of similar quality throughout life. Experiments have been performed to reveal the adaptations during growth which allow the fish to preserve its image of the world throughout life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Abercrombie, M. 1946. Estimation of nuclear populations from microtome sections. Anat. Rec. 94: 239–247.

    Google Scholar 

  • Allen, E.E. & R.D. Fernald. 1981. Spectral sensitivity in Haplochromis burtoni. Neurosci. Abstr. 7: 270.

    Google Scholar 

  • Blaxter, J.H.S. & M.P. Jones. 1967. The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Ass. U.K. 47: 677–697.

    Google Scholar 

  • Fernald, R.D. 1977. Quantitative observations of Haplochromis burtoni under semi-natural conditions. Anim. Behav. 25: 643–653.

    Google Scholar 

  • Fernald, R.D. 1981a. Chromatic organization of a cichlid fish retina. Vis. Res. 20: 1749–1753.

    Google Scholar 

  • Fernald, R.D. 1981b. Visual field and retinal projections in the African cichlid fish, Haplochromis burtoni. Neurosci. Abstr. 7: 844.

    Google Scholar 

  • Fernald, R.D. 1983. Neural basis of visual pattern recognition in fish. pp. 570–600. In: J.P. Ewert, R.R. Capranica & D.J. Ingle (ed.) Advances in Vertebrate Neuroethology, Plenum Press, New York.

    Google Scholar 

  • Fernald, R.D. & N. Hirata. 1977a. Field study of Haplochromis burtoni: habitats and co-habitants. Env. Biol. Fish 2: 299–308.

    Google Scholar 

  • Fernald, R.D. & N. Hirata. 1977b. Field study of Haplochromis burtoni: quantitative behavioral observations. Anim. Behav. 25: 964–975.

    Google Scholar 

  • Fernald, R.D. & N. Hirata. 1980. The ontogeny of social behavior and body coloration in the African cichlid fish Haplochromis burtoni. Z. Tierpsychol. 50: 180–187.

    Google Scholar 

  • Fernald, R.D. & P. Johns. 1980. Retinal structure and growth in the African cichlid fish. Suppl. to Invest. Ophthal. 69 pp.

  • Fernald, R.D. & P. Liebman. 1980. Visual receptor pigments in the African cichlid fish, Haplochromis burtoni. Vis. Res. 20: 857–864.

    Google Scholar 

  • Fernald, R.D. & S. Wright. 1983. Maintenance of optical quality during crystalline lens growth. Nature 301: 618–620.

    Google Scholar 

  • Fraley, N.B. & R.D. Fernald. 1982. Social control of developmental rate in the African cichlid fish, Haplochromis burtoni. Z. Tierpsychol. 60: 66–82.

    Google Scholar 

  • Hairston, N.G., K.T. Li & S.S. Easter. 1982. Fish vision and the detection of planktonic prey. Science 218: 1240–1242.

    Google Scholar 

  • Hendrickson, A. & S. Edwards. 1978. The use of axonal transport for autoradiographic tracing of pathways in the central nervous system. pp. 242–285. In: R.T. Robertson (ed.) Neuroanatomical Research Techniques, Academic Press, New York.

    Google Scholar 

  • Hogben, L. & F. Landgrebe. 1938. The pigmentary effector system IX. The receptor fields of the teleostean visual response. Proc. R. Soc. B128: 317–342.

    Google Scholar 

  • Hollyfield, J.G. 1972. Histogenesis of the retina in the killifish Fundulus heteroclitus. J. Comp. Neurol 144: 373–380.

    Google Scholar 

  • Johns, P.R. 1977. Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol. 176: 343–357.

    Google Scholar 

  • Johns, P.E. & S.S. Easter. 1977. Growth of the adult goldfish eye. II. Increase in retinal cell number. J. Comp. Neurol. 176: 331–342.

    Google Scholar 

  • Johns, P.R. & R.D. Fernald. 1981. Genesis of rods in teleost fish retina. Nature 293: 141–142.

    Google Scholar 

  • Lyall, A.H. 1957. The growth of the trout retina. Quant. J. Micros. Sci. 98: 101–110.

    Google Scholar 

  • Mann, I. 1950. The development of the human eye. Grune & Stratton, New York. 312 pp.

    Google Scholar 

  • Matthiessen, L. 1880. Untersuchungen über den Aplanatismus und die Periscopie der Krystallinsen in den Augen der Fische. Pflugers Arch. ges. Physiol. 21: 287–307.

    Google Scholar 

  • Maxwell, J.C. 1854. Some solutions of problems. Camb. Dubl. math. J. 8: 188–195.

    Google Scholar 

  • Meyer, R.L. 1978. Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol. 59: 99–111.

    Google Scholar 

  • Müller, H. 1952. Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jb. Allgemeine Zool. u. Physiol. der Tier. 63: 275–324.

    Google Scholar 

  • Philipson, B. 1969. Distribution of protein within the normal rat lens. Invest. Ophthal. 8: 258–270.

    Google Scholar 

  • Sandy, J.M. & J.H.S. Blaxter. 1980. A study of retinal development in larval herring and sole. J. Mar. Biol. Ass. U.K. 60: 59–71.

    Google Scholar 

  • Scholes, J.H. 1976. Neuronal connections and cellular arrangement in the fish retina. pp. 63–93. In: F. Zettler & R. Weiler (ed.) Neural Principles in Vision, Springer-Verlag, New York.

    Google Scholar 

  • Wagner, H.J. 1974. Development of the retina of Nannacara anomala, with references to regional variations of differentiation. Z. Morphol. Tiere. 79: 113–131.

    Google Scholar 

  • Walls, G.L. 1967. The vertebrate eye and its adaptive radiation. Reprinted by Hafner Publishing Company, London. 785 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernald, R.D. Growth of the teleost eye: novel solutions to complex constraints. Environ Biol Fish 13, 113–123 (1985). https://doi.org/10.1007/BF00002579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002579

Keywords

Navigation