Skip to main content
Log in

Characterization and chemodynamics of plant constituents during maturation, senescence and humus genesis in spruce ecosystems

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Spruce needles of different age, litter materials and soil samples from the L-, O-and A-horizons of a mor profile were analysed by temperature-programmed pyrolysis (Py) in combination with field ionization mass spectrometry (FIMS). The integrated Py-FI mass spectra give characteristic fingerprints of the biomaterials investigated. The application of principal component analysis to the mass spectral data results in a clear discrimination and classification of the samples reflecting the chemical modifications and transformations of organic matter by biochemical and biogeochemical processes. The chemical compositions are determined by processes such as enrichment and/or translocation of plant constituents (e.g. carbohydrates, lignin, lipids, suberin, and aliphatic polymers) during maturation and senescence of needles; amendment of new components; decomposition; selective preservation and humification processes in the soil environment.

During needle maturation, major chemical changes include the decrease of carbohydrate content, condensation of lignin, and crosslinking of waxes. Senescent needles are characterized by lower contents of carbohydrates and lower yields of monomeric pyrolysis products from lignin. The contribution of different litter materials to the humus layer can be estimated by differences in chemical composition. During litter decomposition and humification on the forest floor, carbohydrate content decreases rapidly. The lignin content remains almost constant but some subunits are continuously oxidized. Wax material accumulates until the mechnical disintegration of the needle occurs. In the O-horizons polymeric aliphatic materials are enriched in humified plant remains. A constant increase of aryl-alkyl esters from suberin in the O-horizons is due to both root input and selective preservation. In general, mainly aliphatic polymers and aryl-alkyl esters accumulate during the genesis of mor profiles under conifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babel U (1975) Micromorphology of soil organic matter. In: Gieseking JE (Ed) Soil Components, Vol I (pp 369–473). Springer, Berlin

  • Barker C & Wang L (1988) Applications of pyrolysis in petroleum geochemistry: a bibliography. J. Anal. Appl. Pyrolysis 13: 9–61

    Google Scholar 

  • Berg B, Hannus K, Popoff T & Theander O (1980) Chemical components of Scots pine needles and needle litter and inhibition of fungal species by extractives. Ecol. Bull. 32: 391–400

    Google Scholar 

  • Blume H-P (1965) Die Charakterisierung von Humuskörpern durch Streu- und Humus-Stoffgruppenanalysen unter Berücksichtigung ihrer morphologischen Eigenschaften. Z. Pflanzenernähr. Bodenk. 111: 95–113

    Google Scholar 

  • Bochter R (1984) Böden naturnaher Bergwaldstandorte auf carbonatreichen Substraten — Beiträge zur Genese, Ökologie und Systematik. Nationalpark Berchtesgaden, Forschungsberichte 6

  • Bracewell JM, Haider K, Larter SR & Schulten H-R (1989) Thermal degradation of humic substances relevant to structural studies. In: Hayes MBH, Malcolm RL & Swift RS (Eds) Humic Substances II: Structures and Interactions (pp 181–222) Wiley, N.Y.

    Google Scholar 

  • Buch von MW (1962) Vergleichende chemische und mikromorphologische Untersuchungen bei der Extrahierung von Humusstoffen aus Waldböden. Z. Pflanzenernāhr. Bodenk. 97: 255–265

    Google Scholar 

  • Evans RJ, Milne TA & Soltys MN (1986) Direct mass spectrometric studies of the pyrolysis of carbonaceous fuels. III. Primary pyrolysis of lignin. J. Anal. Appl. Pyrolysis 9: 207–236

    Google Scholar 

  • Garozzo D & Montaudo G (1985) Identification of polymers by library search of pyrolysis mass spectra and pattern recognition analysis. J. Anal. Appl. Pyrolysis 9: 1–17

    Google Scholar 

  • Günthhardt-Georg MS & Rossi FA (1987) Der Einfluβ von Fichtennadelwachs auf Nadelzersetzung und Erlenkeimung. Z. Pflanzenernähr. Bodenk. 150: 86–93

    Google Scholar 

  • Harper AM, Duewer DL & Kowalski BR (1977) ARTHUR and experimental data analysis: The heuristic use of a polyalgorithm. In: Kowalksi BR (Ed) Chemometrics: Theory and Application. ACS Symp. Ser. 52:14–51

  • Hempfling R (1988) Charakterisierung verschiedener Waldhumusformen and ihrer Dynamik durch analytische Pyrolyseverfahren. Bayreuther Bodenkundliche Berichte 6: 1–126

    Google Scholar 

  • Hempfling R & Schulten H-R (1990a) Chemical characterization of the organic matter in forest soils by Curie point pyrolysis-GC/MS and pyrolysis field-ionization mass spectrometry. Org. Geochem. 15: 131–145

    Google Scholar 

  • Hempfling R & Schulten H-R (1990b) Direct chemical characterization of dissolved organic matter in water by pyrolysis-field ionization mass spectrometry. Int. J. Environ. Anal. Chem. 43: 55–62

    Google Scholar 

  • Hempfling R, Zech W & Schulten H-R (1988) Chemical composition of the organic matter in forest soils: 2. moder profile. Soil Science 146: 262–276

    Google Scholar 

  • Horner JD, Cates RG & Gosz JR. (1987) Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage. Oecologica 72: 515–519

    Google Scholar 

  • Kögel I, Hempfling R, Zech W, Hatcher PG & Schulten H-R (1987) Chemical composition of the organic matter in forest soils: l. forest litter. Soil Science 146: 124–136

    Google Scholar 

  • Kögel-Knabner I, Zech W, Hatcher PG (1988) Chemical composition of the organic matter in forest soils: 3. humus profile Z. Pflanzenernähr. Bodenk. 151: 331–340

    Google Scholar 

  • Kotra RK & Hatcher PG (1988) Pyrolysis — gas chromatography studies of the origins of the insoluble aliphatic component of peat. Naturwissenschaften 75: 196–198

    Google Scholar 

  • Mangenot F (1980) Les Litières forestières. Rev. for. Fr. 32: 339–355

    Google Scholar 

  • Meuzelaar HLC, Windig W, Harper AM, Huff SM, McClennen WH, Richards JM (1984) Pyrolysis mass spectrometry of complex organic materials. Science 226: 268–274

    Google Scholar 

  • Niemann GJ (1979) Some aspects of the chemistry of Pinaceae needles. Acta Bot. Need. 28: 73–88

    Google Scholar 

  • Ogner G (1985) A comparison of four different raw humus types in Norway using chemical degradations and CPMAS13C NMR spectroscopy. Geoderma 35: 343–353

    Google Scholar 

  • Pouwels AD, Eijkel GB & Boon JJ (1989) Curie-point pyrolysis capillary gas chromatography/high-resolution mass spectrometry of microcristalline cellulose. J. Anal. Appl. Pyrolysis 14: 237–280

    Google Scholar 

  • Schulten H-R, Simmleit N & Müller R (1987) High-temperature, high-sensitivity pyrolysis field ionization mass spectrometry. Anal. Chem. 59: 2903–2908

    Google Scholar 

  • Schulten H-R, Simmleit N & Müller R (1989) Characterization of plant materials by pyrolysis-field ionization mass spectrometry: High resolution mass spectrometry, timeresolved high-resolution mass spectrometry, and Curie-point pyrolysis-gas chromatography/mass spectrometry of spruce needles. Anal. Chem. 61: 221–227

    Google Scholar 

  • Schulten H-R, Simmleit N & Rump HH (1986) Soft ionization of epicticular waxes isolated from coniferous needles. Chem. Phys. Lipids 41: 209–224

    Google Scholar 

  • Simmleit N (1988) Charakterisierung und Differenzierung von Fichten (Picea abies) durch multivariate chemometrische Auswertung von biometriscen, chemischen und pyrolytischen Analysen. Bayreuther Bodenkundliche Berichte 7: 1–197

    Google Scholar 

  • Simmleit N & Schulten H-R (1989a) Analytical pyrolysis and environmental research. J. Anal. Appl. Pyrolysis 15: 3–28

    Google Scholar 

  • Simmleit N (1989b) Differentiation of spruce needles by integrated mass spectra and principal component analysis. Biomed. Environ. Mass Spectrom. 18: 1023–1029

    Google Scholar 

  • Simmleit N (1989c) Thermal degradation products of spruce needles. Chemosphere 18: 1855-1869

    Google Scholar 

  • Smeerdijk van DG & Boon JJ (1987) Characterization of subfossil Sphagnum leaves, rootlets of Ericaceae and their peat by pyrolysis high resolution gas chromatography/ mass spectrometry. J. Anal. Appl. Pyrolysis 11: 377–402

    Google Scholar 

  • Tegelaar EW, de Leeuw JW, Largeau C, Derenne S, Schulten H-R, Müller R, Boon JJ, Nip M & Sprenkels JCM (1989) Scope and limitations of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L. J. Anal. Appl. Pyrolysis 15: 29–54

    Google Scholar 

  • Thomas H & Stoddart JL (1980) Leaf senescence. Ann. Rev. Plant Physiol. 31: 83–111

    Google Scholar 

  • Vogt KA, Grier CC & Vogt DJ (1986) Production, turnover and nutrient dynamics of above- and below-ground detritus of world forests. Adv. Ecol. Res. 15: 303–377

    Google Scholar 

  • Windig W, Meuzelaar HLC, Shafizadeh F & Kelsey RG (1984) Biochemical analysis of wood and wood products by pyrolysis-mass spectrometry and multivariate analysis. J. Anal. Appl. Pyrolysis 6: 233–250

    Google Scholar 

  • Zech W, Hempfling R, Haumaier L, Schulten H-R & Haider K (1990) Humification in subalpine Rendzinas: Chemical analysis, IR and13C NMR spectroscopy and pyrolysisfield ionization mass spectrometry. Geoderma 47: 123–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hempfling, R., Simmleit, N. & Schulten, HR. Characterization and chemodynamics of plant constituents during maturation, senescence and humus genesis in spruce ecosystems. Biogeochemistry 13, 27–60 (1991). https://doi.org/10.1007/BF00002875

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002875

Key words

Navigation