Skip to main content
Log in

Metabolism of a subtropical Brazilian lagoon

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Total community, planktonic and benthic metabolisms were measured by using the carbon dioxide production and consumption, the ‘diurnal curve' method and the in situ bottle incubation technique over an annual cycle in two sublagoons of the Saquarema Lagoon, Brazil. Metabolic rates of the phytoplankton-based lagoon were characterized by considerable daytime and daily variability in production and respiration, by a seasonal shift between net autotrophy and heterotrophy and by an annual balance of production (P = 105 ± 65 mmoles/m2/dayn = 25) and respiration (R = 102 ± 50 mmoles/m2/dayn = 25). Total community metabolism was similar throughout the lagoon, but phytoplankton assimilation rates and benthic respiration showed spatial differences. Bottle incubations compared to total community free water respiration suggested that the pelagic community was 2–5 times more active than the benthos

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleem AA & Samaan AA (1969) Productivity of Lake Mariut, Egypt. Part II. Primary production. Internationalen Revue der gesamten Hydrologie 54: 491–527

    Google Scholar 

  • Arenas V (1979) Balance anual del carbono orgánico, nitrógeno y fósforo en el sistema langunar Huizache-Caimanero, México. PhD dissertation, Universidad Nacional Autónoma de México

  • Balzer W, Pollehne F & Erlenkeuser H (1986) Cycling of organic carbon in a coastal marine system. In: Sly PG (Ed) Sediment and Water Interaction (pp 325–330). Springer Verlag, Berlin

    Google Scholar 

  • Brichambaut P & Lamboley G (1968) Le rayonnement solaire au sol et ses mesures. Cahier de l'AFEDES, INRA, Paris, 120 pp

    Google Scholar 

  • Carmouze JP (1984) Généralisation d'une méthode de détermination du carbone minéral total par pH-métrie dans les eaux. Rev. Hydrobiol. Trop. 17: 175–189

    Google Scholar 

  • Carmouze JP & Caumette P (1985) Les effets de la pollution organique sur les biomasses et les activités du phytoplancton et des bactéries hétérotrophes dans la lagune Ebrié (Cte d'Ivoire). Rev. Hydroboil. Trop. 18(3): 183–211

    Google Scholar 

  • Costa-Moreira AL (1989) Estados tróficos da laguna de Saquarema num ciclo anual. Tese de Mestrado. Dt° de Geoquímica, U.F.F. Niteroi, RJ, Brazil

  • Costa-Moreira AL & Carmouze JP (1991) La lagune de Saquarema: Hydroclimat, seston et éléments biogéniques au cours d'un cycle annuel. Rev. Hydrobiol. Trop. 24(1): 13–23

    Google Scholar 

  • Day JW Jr, Day RH, Barreiro MT, Ley-Lou F & Madden CJ (1988) Primary production in the laguna de Terminos, a tropical estuary in the southern Gulf of Mexico. Oceanologica Acta Sp No 5: 269–276

    Google Scholar 

  • Florek RJ & Rowe GT (1983) Oxygen consumption and dissolved inorganic nutrient production in marine coastal and shelf sediments of middle Atlantic Bight. Int. Revue Gess. Hydrobiol. 68(1): 73–112

    Google Scholar 

  • Flores-Verdugo FJ, Day JW Jr, Mee L & Briseno-Duenas R (1988) Phytoplankton production and seasonal biomass variation of Seagrasses, Rupiamaritima L., in a tropical Mexican lagoon with an ephemeral inlet. Estuaries 11: 51–56

    Google Scholar 

  • Fuhrman JA & Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Appl. Environ. Microbiol. 39: 1085–1095

    Google Scholar 

  • Gilmartin M & Revelante N (1978) The phytoplankton characteristics of the barrier island lagoons of the Gulf of California. Estuarine and Coastal Marine Science 7: 29–47

    Google Scholar 

  • Gran G (1952) Determination of equivalent point in potentiometric titration. Analyst 77: 661–671

    Google Scholar 

  • Hall CAS & Moll R (1975) Methods of assessing aquatic primary production. In: Lieth AJ & Whittaker RR (Eds) Primary Production in the Biosphere (pp 19–53). Springer-Verlag, New York

    Google Scholar 

  • Harris GP & Puccini BB (1977) Photosynthesis by natural phytoplankton populations. Arch. Hydrobiol. 80: 405–457

    Google Scholar 

  • Jannash HW (1967) Growth of marine bacteria at limiting concentrations of organic carbon in sea water. Limnol. Oceanogr. 12: 264–271

    Google Scholar 

  • Kanwisher J (1963) On the exchange of gases between the atmosphere and the sea. Deep. Sea Res. 10: 195–208

    Google Scholar 

  • Kjervfe B (1986) Comparative oceanography of coastal lagoons. In: Wolfe DA (Ed) Estuarine Variability (pp 63–81). Academic Press, New York

    Google Scholar 

  • Knoppers B & Moreira PF (1988) Materia em suspenção e sucessão do fitoplancton na lagoa de Guarapina, RJ Acta Limnológica Brasiliense III(2): 291–317

    Google Scholar 

  • Knoppers B, Kjerfve B & Carmouze JP (1991) Trophic state and water turn-over time in six choked coastal lagoons in Brazil. Biogeochemistry 14: 149–166 (this issue)

    Google Scholar 

  • Kunicki-Goldfinger WJH (1974) Methods in aquatic microbiology. A story of apparent precision and frustrated expectations. Pol; Arch. Hydrobiol. 21: 3–17

    Google Scholar 

  • Lerman A (1979) Geochemical Processes (pp 74–120). Wiley, New York

    Google Scholar 

  • Liss PS (1973) Processes of gas exchanges across an air-water interface. Deep Sea Res. 20: 221–238

    Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346

    Google Scholar 

  • Machado EC & Knoppers B (1988) Sediment oxygen consumption in an organic rich subtropical lagoon, Brazil. Science of the Total Environment 75: 341–349

    Google Scholar 

  • Mee LD (1978) Coastal lagoons. In: Riley JP & Chester R (Eds) Chemical Oceangraphy 7 (pp 441–490). Academic Press, New York

    Google Scholar 

  • Moreira PF & Knoppers B (1990) Um ciclo anual da produção primaria e nutrientes na Lagoa de Guarapina, R.J. Acta Limnologica Brasiliensia III: 275–290

    Google Scholar 

  • Nishimura H, Naksjima M & Kumagai M (1984) Exchange of oxygen and carbon dioxide across the water surface during algal blooms in a pond. Water Res. 18(3): 345–350

    Google Scholar 

  • Nixon SW & Oviatt CA (1973) Ecology of a new England salt marsh. Ecological Monographs. 43: 463–498

    Google Scholar 

  • Nixon SW (1981) Remineralization and nutrient cycling in coastal marine ecosystems. In: Neilson & Cronin LE (Eds) Estuaries and Nutrients (pp 111–138). Humana Press, Clifton, New Jersey

    Google Scholar 

  • Nixon SW (1982) Nutrients, primary production, and fisheries yields in coastal lagoons. Oceanologica Acta Sp N° 5: 357–371

    Google Scholar 

  • Odum HT (1956) Primary production in flowing water. Limnol. Oceanogr. 1: 102–117

    Google Scholar 

  • Odum HT & Hoskin CM (1958) Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci. Univ. Texas 6: 159–170

    Google Scholar 

  • Pagès J, Lemasson L & Dufour P (1981) Primary production measurements in a brackish tropical lagoon. Effect of light, as studied by the 14C method. Rev. Hydrobiol. Trop. 14: 3–15

    Google Scholar 

  • Park K, Hood DW & Odum HT (1958) Diurnal pH variation in Texas bays, and its application to primary production estimation. Publication Institute Marine Science University of Texas 9: 404–453

    Google Scholar 

  • Qasim SZ, Wellershaus S, Bhattathiri PMA & Abidi SAH (1969) Organic production in a tropical estuary. Proceedings Indian Academy of Science, Section B 59: 51–64

    Google Scholar 

  • Qasim SZ (1979) Primary production in some tropical environments. In: Dunhar MJ (Ed) Marine Production Mechanisms (pp 31–69). International Biological Program-IBP, 20 Cambridge

  • Randall J & Day JW Jr (1987) Effects of river discharge and vertical circulation on aquatic primary production in a turbid Louisiana (USA) estuary. Netherlands Journal of Sea Research 21: 231–242

    Google Scholar 

  • Rao SDV (1981) Spacial and temporal variation of phytoplankton production in Lagoons. In: Coastal Lagoon Research, Present and Future. UNESCO Technical Papers in Marine Science 33

  • Reyes M & Merino M (1991) Primary production and eutrophication in Bojorguez lagoon, Cancun, Mexico (in press)

  • Sandoval-Rojo LC, Flores-Verdugo FJ, Araujo UZ, Day JW Jr & Mercado AE (1988) Phytoplankton productivity in Barra de Navidade Coastal lagoon on the Pacific Coast of Mexico. Rev. Hydrobiol. Trop. 21: 101–108 /173–189

    Google Scholar 

  • Sieburth JMcN (1967) Seasonal selection of estuarine bacteria by temperature. J. Exp. Mar. Biol. Ecol. 1: 98–121

    Google Scholar 

  • Sholkovitz ER (1975) Flocculation of dissolved organic and inorganic matter during the mixing of river water and sea water. Geochim. Cosmochim. Acta. 40: 831–845

    Google Scholar 

  • Smith SV (1988) Mass Balance in Coaral reef dominated areas. In: Janson Bod (Ed) Coastal-Offshore Ecisystem Interaction. Lecture Notes on Coastal and Estuarine Studies 22 (pp 209–226). Springer Verlag, Berlin

    Google Scholar 

  • Smith SV & Mackenzie FT (1987) The ocean as a net heterotrophic system: Implications from the biogeochemical cycle. Global Biogeochemical Cycles. 1(3): 187–198

    Google Scholar 

  • Sournia A (1977) Analyse bilan de la production primaire dans les récifs coralliens. Annales Institut de Monaco, nouvelle série 53: 47–73

    Google Scholar 

  • Sournia A, Delasalle B & Ricard M (1981) Premiers bilans de production organique et de calcification d'un récifbarriére de la Polynésie Française. Océanologica Acta 4: 4236431

    Google Scholar 

  • Strickland JDH & Parsons TR (1972) A Practical Handbook of Seawater Analysis, 2nd edn. Bull Fish. Res. BD Canada, 167, 319 pp

  • Stumm W & Morgan YY (1981) Aquatic Chemistry, 2nd edn. Wiley Interscience, New York, 780 pp

    Google Scholar 

  • Tison DL & Pope DH (1980) Effects of temperature on mineralization by heterotrophic bacteria. Appl. Environ. Microbiol. 39: 584–587

    Google Scholar 

  • Tundisi J, Tundisi TM & Kutner MB (1973) Plankton studies in a mangrove environment. VIII. Further investigations on primary production, standing stock of phyto- and zooplankton, and some environmental factors. Internationalen Revue der gesamten Hydrobiologie 58: 925–940

    Google Scholar 

  • Vaulot D & Frisoni GF (1986) Phytoplankton productivity and nutrients in five Mediterranean lagoons. Oceanologica Acta 9: 57–63

    Google Scholar 

  • Vollenweider RA (1974) A manual in Methods for measuring primary production in aquatic environments. IBP Handbook N° 12. Blackwell Scientific Publications. Oxford

    Google Scholar 

  • Weiler RR (1975) Carbon dioxide exchanges and productivity in lake Erie and lake Ontario. Verh. Intemat. Verein. Limnol. 19: 694–704

    Google Scholar 

  • Williams PJLeB & Gray RW (1970) Heteretrophic utilization of dissolved organic compounds in the sea. J. Mar. Biol. Assoc. UK 50: 871–881

    Google Scholar 

  • Zobell CE (1946) Marine Microbiology. Cronica Botanica, Waltham, Mass

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmouze, J.P., Knoppers, B. & Vasconcelos, P. Metabolism of a subtropical Brazilian lagoon. Biogeochemistry 14, 129–148 (1991). https://doi.org/10.1007/BF00002902

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002902

Key words

Navigation