Skip to main content
Log in

A catastrophe theory approach to fracture mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A cohesive crack model is applied to analyze the crack stability in elastic-softening materials. The shape of the global load-displacement response changes substantially by varying size-scale and keeping the geometrical shape of the structure unchanged. The softening branch becomes steeper and when the size-scale increases. A critical size-scale does exist for which the softening slope is infinite. In such a case, the load carrying capacity drastically decreases for relatively small displacement increments. Then, for larger size-scales, the softening slope becomes positive and a cusp catastrophe appears. It is proved that such a bifurcation point can be revealed by the simple LEFM condition.

Résumé

On utilise un modèle de fissure basé sur la cohésion pour analyser les conditions de fissuration stable dans des matériaux sensibles à l'adoucissement en condition élastique.

A formes géométriques égales, le profile de la courbe globale charge-déplacement se modifie considérablement avec une variation des dimensions d'une structure.

Lorsque l'échelle des dimensions est accrue, la portion correspondant à l'adoucissement devient de plus en plus raide, pour atteindre une pente infinite à une certaine échelle.

Il y correspond une décroissance brutale de la capacité de tenir la charge, pour de faibles accroissements de la déformation. Puis, pour des dimensions plus importantes, la pente de la coube d'adoucissement devient positive, et il apparaît des conditions de dégénérescence catastrophique.

On établit qu'un tel point de bifurcation peut être mis en évidence par la simple condition d'égalité de la mécanique linéaire élastique de la rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M.T. Thompson and P.A. Shorrock, Journal of Mechanics and Physics of Solids 23 (1975) 21–37.

    Google Scholar 

  2. J.M.T. Thompson and P.A. Shorrock, Nature 260 (1976) 598–599.

    Google Scholar 

  3. M. Potier-Ferry, International Journal of Engineering Science 23 (1985) 821–837.

    Google Scholar 

  4. R. Thom, Structural Stability and Morphogenesis, Benjamin, New York (1972).

    Google Scholar 

  5. A. Hillerborg, M. Modeer, and P.E. Petersson, Cement and Concrete Research 6 (1976) 773–782.

    Google Scholar 

  6. P.E. Petersson, Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM-1006, Division of Building Materials, Lund Institute of Technology (1981).

  7. G. Colombo and E. Limido, in XI Convegno Nazionale dell' Associazone Italiana per l'Analisi delle Sollecitazioni, Torino (1983) 233–243.

  8. A. Carpinteri, A. Di Tommaso, and M. Fanelli, Influence of material parameters and geometry on cohesive crack propagation, International Conference on Fracture Mechanics of Concrete, Lausanne, October 1–3, 1985.

  9. ASTM, Standard Method of Test for Plane Strain Fracture Toughness of Metallic Materials, E 399–74.

  10. A. Carpinteri, in Proceedings of the International Conference on Analytical and Experimental Fracture Mechanics, June 23–27, 1980, Roma, G.C. Sih and M. Mirabile (eds.), Sijthoff & Noordhoff (1981) 785–797.

  11. A. Carpinteri, Engineering Fracture Mechanics 16 (1982) 467–481.

    Google Scholar 

  12. A. Carpinteri, C. Marega, and A. Savadori, Engineering Fracture Mechanics 21 (1985) 263–271.

    Google Scholar 

  13. A. Carpinteri, in Application of Fracture Mechanics to Cementitious Composites, NATO Advanced Research Workshop, September 4–7, 1984, Northwestern University, Martinus Nijhoff Publishers (1985) 287–316.

  14. A. Carpinteri, in Structure and Crack Propagation in Brittle Matrix Composite Materials, Euromech Colloquium No. 204, November 12–15, 1985, Jablonna (Warsaw), Elsevier Applied Science Publishers (1986) 497–508.

  15. K. Rokugo, S. Ohno, and W. Koyanagy, in International Conference on Fracture Mechanics of Concrete, Lausanne, October 1–3, 1985.

  16. A. Carpinteri and G.C. Sih, Theoretical and Applied Fracture Mechanics 1 (1984) 145–159.

    Google Scholar 

  17. Z.P. Bazant and L. Cedolin, Journal of the Engineering Mechanics Division, ASCE 105 (1979) 297–315.

    Google Scholar 

  18. H. Tada, P. Paris, and G. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, St. Louis, Missouri (1963) 2.16–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A. A catastrophe theory approach to fracture mechanics. Int J Fract 44, 57–69 (1990). https://doi.org/10.1007/BF00012552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012552

Keywords

Navigation