Skip to main content
Log in

A new approach of three-dimensional strength theory for anisotropic materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A three-dimensional failure criterion is developed in a form of quadratic tensor polynomial with the fundamental strength function expressed in a sine series. This criterion has the operational flexibility of any desired degree of accuracy. It can be shown that the present theory is a generalization of the Von Mises yield criterion. One of the main features of this criterion is that it does not require shear strength properties. The flexibility and accuracy of this theory are justified through its comparison with the experimental data for three material systems under uniaxial tension, uniaxial compression and biaxial loading. Comparisons are also made with several existing failure criteria.

Résumé

On développe un critère de rupture à trois dimensions sous forme d'un tenseur polynomial quadratique comportant une fonction de résistance exprimée par une série sinusoïdale. Ce critère présente une flexibilité opérationnelle permettant tout degré de précision désiré. On peut montrer que la théorie présente est une généralisation du critère de plastification de Von Mises. L'une des caractéristiques principales de ce critère est qu'il ne requiert pas les propriétés de résistance au cisaillement. On rend compte de la flexibilité et de l'exactitude de cette théorie en la comparant aux données expérimentales relatives à trois systèmes de matériau soumis à tension monoaxiale, à compression monoaxiale et à sollicitation biaxiale. Des comparaisons sont également faites avec plusieurs critères de rupture existants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Hankinson, Investigation of Crushing Strength of Spruce at Varying Angles of Grain, Air Service Information Circular No. 259, U.S. Air Service (1921).

  2. S. Cheng, Failure Criterion for Clear Wood under Combined Stresses, Report for the Forest Products Lab., Madison, WI (1982).

  3. S.C. Cowin, Journal of Applied Mechanics 46 (1979) 832–838.

    Google Scholar 

  4. J.Y. Liu, Journal of Composite Materials 18 (1984) 216–226.

    Google Scholar 

  5. R.S. Sandhu, A Survey of Failure Theories of Isotropic and Anisotropic Materials, Air Force Technical Report AFFDL-TR-72-71 (1972).

  6. S.W. Tsai and E.M. Wu, Journal of Composite Materials 5 (1971) 58–80.

    Google Scholar 

  7. E.M. Wu, Journal of Composite Materials 6 (1972) 472–489.

    Google Scholar 

  8. R.E. Rowland, D.E. Gunderson, J.C. Suhling and M.W. Johnson, Journal of Strain Analysis 20 (1985) 121–127.

    Google Scholar 

  9. J.C. Suhling, R.E. Rowlands, M.W. Johnson and D.E. Gunderson, Experimental Mechanics 25 (1985) 75–84.

    Google Scholar 

  10. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill Co., New York (1979) 219–224.

    Google Scholar 

  11. S.P. Timoshenko, Mechanics of Materials, Van Nostrand Reinhold, New York (1974) 51–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S.C. A new approach of three-dimensional strength theory for anisotropic materials. Int J Fract 45, 35–50 (1990). https://doi.org/10.1007/BF00012608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012608

Keywords

Navigation