Skip to main content
Log in

Basic issues in the mechanics of high cycle metal fatigue

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Mechanics issues related to the formation and growth of cracks ranging from subgrain dimension to up to the order of one mm are considered under high cycle fatigue (HCF) conditions for metallic materials. Further efforts to improve the accuracy of life estimation in the HCF regime must consider various factors that are not presently addressed by traditional linear elastic fracture mechanics (LEFM) approaches, nor by conventional HCF design tools such as the S-N curve, modified Goodman diagram and fatigue limit. A fundamental consideration is that a threshold level for ΔK for small/short cracks may be considerably lower than that for long cracks, leading to non-conservative life predictions using the traditional LEFM approach.

Extension of damage tolerance concepts to lower length scales and small cracks relies critically on deeper understanding of (a) small crack behavior including interactions with microstructure, (b) heterogeneity and anisotropy of cyclic slip processes associated with the orientation distribution of grains, and (c) development of reliable small crack monitoring techniques. The basic technology is not yet sufficiently advanced in any of these areas to implement damage tolerant design for HCF. The lack of consistency of existing crack initiation and fracture mechanics approaches for HCF leads to significant reservations concerning application of existing technology to damage tolerant design of aircraft gas turbine engines, for example. The intent of this paper is to focus on various aspects of the propagation of small cracks which merit further research to enhance the accuracy of HCF life prediction. Predominant concern will rest with polycrystalline metals, and most of the issues pertain to wide classes of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Paris, M.P. Gomez and W.P. Anderson, A rational analytic theory of fatigue, The Trend in Engineering 13 (1961) 9–14.

    Google Scholar 

  2. L.F. Coffin, A study of effects of cyclic thermal stresses on a ductile metal, Transactions ASME 76 (1954) 931–950.

    Google Scholar 

  3. S.S. Manson, Behavior of Materials Under Conditions of Thermal Stress, NACA Report No. 1170, Lewis Flight Propulsion Laboratory, Cleveland (1954).

    Google Scholar 

  4. D.F. Socie, Estimating Fatigue Crack Initiation and Propagation Lives in Notched Plates Under Variable Loading Histories, T.&A.M. Report No. 417, University of Illinois (1977).

  5. N.E. Dowling, Fatigue at notches and the local strain and fracture mechanics approaches, Fracture Mechanics, ASTM STP 677, C.W. Smith (ed.), ASTM Philadelphia (1979) 247–273.

  6. D.F. Socie, M.R. Mitchell and E.M. Caulfield, Fundamentals of modern Fatigue Analysis, Fracture Control Program Report No. 26, University of Illinois, Urbana (April 1977).

    Google Scholar 

  7. P.J.E. Forsyth, A Two-Stage Process of Fatigue Crack Growth, Proceeding, Symposium on Crack Propagation, Cranfield (1971) 76–94.

  8. K.J. Miller, Metal fatigue—past, current and future, Proceedings, Institute of Mechanical Engineers 205 (1991) 1–14.

    Google Scholar 

  9. K.J. Miller, Materials science perspective of metal fatigue resistance, Materials Science Technology 9 (1993) 453–462.

    Article  Google Scholar 

  10. R.C. McClung, K.S. Chan, S.J. Hudak, Jr. and D.L. Davidson, Analysis of Small Crack Behavior for Airframe Applications, FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, Hampton, VA, May 4–6, NASA CP 3274, Part 1 (1994) 463–479.

  11. K. Yamada, M. Shimizu and T. Kunio, Threshold behavior of small cracks in dual phase microstructures, Current Research on Fatigue Cracks, T. Tanaka, M. Jono and K. Komai (eds.), Current Japanese Materials Research, Elsevier, 1 (1987) 27–40.

  12. K. Tokaji, T. Ogawa, Y. Harada and Z. Ando, Limitations of linear elastic fracture mechanics in respect of small fatigue cracks and microstructure, Fatigue and Fracture of Engineering Materials and Structures 9(1) (1986) 1–14.

    Article  Google Scholar 

  13. S. Suresh, Fatigue of Materials, Cambridge Solid State Science Series, Cambridge University Press (1991).

  14. G. Venkataraman, T. Chung, Y. Nakasone and T. Mura, Free-energy formulation of fatigue crack initiation along persistent slip bands: calculation of S-N curves and crack depths, Acta Metallurgica Materialia 38(1) (1990) 31–40.

    Article  Google Scholar 

  15. G. Venkataraman, Y. Chung, and T. Mura, Application of minimum energy formalism in a multiple slip band model for fatigue, Parts I & II, Acta Metallurgica Materialia 39(11) (1991) 2621–2638.

    Article  Google Scholar 

  16. K. Tanaka and Y. Akiniwa, Propagation and non-propagation of small fatigue cracks, in Advances in Fracture Research, Proceedings ICF7, Vol. 2, Houston, TX, (March 20–24 1989) 869–887.

  17. Y.H. Zhang and L. Edwards, The effect of grain boundaries on the development of plastic deformation ahead of small fatigue cracks, Script Metalallurgica Materialia 26 (1992) 1901–1906.

    Article  Google Scholar 

  18. K. Tanaka, Short-crack fracture mechanics in fatigue conditions, Current Research on Fatigue Cracks, T. Tanaka, M. Jono and K. Komai (eds.), Current Japanese Materials Research, Elsevier, 1 (1987) 93–117.

  19. A. Navarro and E.R.de los Rios, An alternative model of the blocking of dislocations at grain boundaries, Philosophical Magazine 57 (1988) 37–50.

    Article  Google Scholar 

  20. K. Dang-Van, Macro-Micro Approach in high-cycle multiaxial fatigue, Advances in Multiaxial Fatigue, ASTM STP 1191, D.L. McDowell and R. Ellis (eds.), ASTM, Philadelphia (1993) 120–130.

    Chapter  Google Scholar 

  21. J. Tong, J.R. Yates and M.W. Brown, A model for sliding mode crack closure: Parts I & II. Engineering Fracture Mechanics 52(4) (1995) 599–623.

    Article  Google Scholar 

  22. J.C. NewmanJr., A crack closure model for predicting fatigue crack growth under aircraft spectrum loading, Methods and models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, J.B. Chang and C.M. Hudson (eds.), ASTM, Philadelphia (1981) 53–84.

    Chapter  Google Scholar 

  23. R.C. McClung and H. Sehitoglu, Closure behavior of small cracks under high strain fatigue histories, Mechanics of Fatigue Crack Closure, ASTM STP 982, J.C. Newman and W. Elber (eds.), ASTM, Philadelphia (1988) 279–299.

    Chapter  Google Scholar 

  24. G.I. Barenblatt, On a model of small fatigue cracks, Engineering Fracture Mechanics 28(5/6) (1987) 623–626.

    Article  Google Scholar 

  25. J.C. NewmanJr., A review of modelling small-crack behavior and fatigue-life predictions for aluminum alloys, Fatigue and Fracture of Engineering Materials and Structures 17(4) (1994) 429–439.

    Article  Google Scholar 

  26. B.N. Leis, A.T. Hopper, J. Ahmad, D. Broek and M.F. Kanninen, Critical review of the fatigue growth of short cracks, Engineering Fracture Mechanics 23(5) (1986) 883–898.

    Article  Google Scholar 

  27. K. Chan, J. Lankford and D. Davidson, A comparison of crack-tip field parameters for large and small fatigue cracks, ASME Journal of Engineering Materials and Technology 108 (1986) 206–213.

    Article  Google Scholar 

  28. S.E. Harvey, P.G. Marsh and W.W. Gerberich, Atomic force microscopy and modeling of fatigue crack initiation in metals, Acta Metallurgica et Materialia 42(10) (1994) 3493–3502.

    Article  Google Scholar 

  29. T. Hoshide, M. Miyahara and T. Inoue, Elastic-plastic behavior of short fatigue cracks in smooth specimens, Basic Questions in Fatigue: VolumeI, ASTM STP 924, J.T. Fong and R.J. Fields (eds.), ASTM, Philadelphia (1988) 312–322.

    Chapter  Google Scholar 

  30. B. Tomkins, Philosophical Magazine 18 (1968) 1041–1066.

    Article  Google Scholar 

  31. P.D. Hobson, M.W. Brown and E.R.de los Rios, Two phases of short crack growth in a medium carbon steel, in The Behaviour of Short Fatigue Cracks, K.J. Miller and E.R.de los Rios (eds.), EGF Publ. 1, Institute of Mechanical Engineers, London (1986) 441–459.

    Google Scholar 

  32. C.H. Wang and K.J. Miller, The effects of mean and alternating shear stresses on short fatigue crack growth rates, Fatigue and Fracture of Engineering Materials and Structures 15(12) (1992) 1223–1236.

    Article  Google Scholar 

  33. A. Navarro and E.R.de los Rios, A model for short fatigue crack propagation with an interpretation of the short-long crack transition, Fatigue and Fracture of Engineering Materials and Structures 10(2) (1987) 169–186.

    Article  Google Scholar 

  34. K. Hussain, E.R.de los Rios and A. Navarro, A two-stage micromechanics model for short fatigue cracks, Engineering Fracture Mechanics 44(3) (1993) 425–436.

    Article  Google Scholar 

  35. K. Tanaka, Y. Akiniwa, Y. Nakai and R.P. Wei, Modelling of small fatigue crack growth interacting with grain boundary, Engineering Fracture Mechanics 24(6) (1986) 803–819.

    Article  Google Scholar 

  36. C. Li, Vector CTD analysis for crystallographic crack growth, Acta Metallurgica et Materialia 38(11) (1990) 2129–2134.

    Article  Google Scholar 

  37. K. Dolinski, Formulation of a stochastic model of fatigue crack growth, Fatigue and Fracture of Engineering Materials and Structures 16(9) (1993) 1007–1019.

    Article  Google Scholar 

  38. B.P. Haigh, Reports of the British Association for the Advancement of Science (1923) 358–368.

  39. H.J. Gough and H.V. Pollard, The strength of metals under combined alternating stresses, Proceedings, Institute of Mechanical Engineers 131(3) (1935) 3–54.

    Article  Google Scholar 

  40. G. Sines, Failure of Materials under Combined Repeated Stresses with Superimposed Static Stresses, NACA Technical Note 3495, NACA, Washington (1955).

    Google Scholar 

  41. F.B. Stulen and H.N. Cummings, A failure criterion for multiaxial fatigue stresses, Proceedings, ASTM 54 (1954) 822–835.

    Google Scholar 

  42. J.J. Guest, Proceedings, Institute of Automobile Engineers 35 (1940) 33–72.

    Article  Google Scholar 

  43. W.N. Findley, A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of the Engineering Industry (1959) 301–306.

  44. D. Socie, Multiaxial fatigue damage models, ASME Journal of Engineering Materials and Technology (109) (1987) 293–298.

    Google Scholar 

  45. D.F. Socie, Critical plane approaches for multiaxial fatigue damage assessment, Advances in Multiaxial Fatigue, ASTM STP 1191, D.L. McDowell and R. Ellis (eds.), ASTM, Philadelphia (1993) 7–36.

    Chapter  Google Scholar 

  46. M.W. Brown and K.J. Miller, A theory for fatigue failure under multiaxial stress-strain conditions, Proceedings, Institute of Mechanical Engineers 187(65) (1973) 745–755.

    Google Scholar 

  47. M.W. Brown and K.J. Miller, Two decades of progress in the assessment of multiaxial low-cycle fatigue life, Low Cycle Fatigue and Life Prediction, ASTM STP 770, C. Amzallag, B. Lei, and P. Rabbe (eds.), ASTM, Philadelphia (1982) 482–499.

    Chapter  Google Scholar 

  48. A. Fatemi and D. Socie, A critical plane approach to multiaxial fatigue damage including out of phase loading, Fatigue and Fracture of Engineering Materials and Structures 11 (3) (1988) 145–165.

    Article  Google Scholar 

  49. A. Fatemi and P. Kurath, Multiaxial fatigue life predictions under the influence of mean stress, ASME Journal of Engineering Materials and Technology 110 (1988) 380–388.

    Article  Google Scholar 

  50. D.L. McDowell and J.-Y. Berard, A ΔJ-based approach to biaxial fatigue, Fatigue and Fracture of Engineering Materials and Structures 15(8) (1992) 719–741.

    Article  Google Scholar 

  51. R.N. Smith, P. Watson and T.H. Topper, A stress-strain parameter for fatigue of metals, Journal of Materials 5(4) (1970) 767–778.

    Google Scholar 

  52. M.W. Brown, K.J. Miller, U.S. Fernando, J.R. Yates and D.K. Suker, Aspects of multiaxial fatigue crack propagation, Proceedings International Conference on Biaxial/Multiaxial Fatigue, St. Germain en Laye, France (May 31–June 3, 1994) 3–16.

  53. T. Hoshide and D. Socie, Mechanics of mixed mode small fatigue crack growth, Engineering Fracture Mechanics 26(6) (1987) 842–850.

    Article  Google Scholar 

  54. H. Nisitani, Behavior of small cracks in fatigue and relating phenomena, Current Research on Fatigue Cracks, T. Tanaka, M. Jono and K. Komai (eds.), Current Japanese Materials Research, 1, Elsevier (1987) 1–26.

  55. D.L. McDowell and V. Poindexter, Multiaxial fatigue modelling based on microcrack propagation: stress state and amplitude effects, Proceedings International Conference on Biaxial/Multiaxial Fatigue, St. Germain en Laye, France (May 31–June 3, 1994) 115–130.

  56. D.L. McDowell, Multiaxial fatigue modelling based on microcrack propagation, Symposium on Material Durability/Life Prediction modeling, ASME PVP-Vol. 290, ASME Winter Annual Meeting, Chicago, IL (Nov. 6–11, 1994) 69–83.

  57. A.J. McEvily and K. Minakawa, On crack closure and the notch size effect in fatigue, Engineering Fracture Mechanics 28(5/6) (1987) 519–527.

    Article  Google Scholar 

  58. R.C. McClung and H. Sehitoglu, Closure and growth of fatigue cracks at notches, ASME Journal of Engineering Materials and Technology 114 (1992) 1–7.

    Article  Google Scholar 

  59. S. Suresh, Crack growth retardation due to micro-roughness: a mechanism for overload effects in fatigue, Scripta Metallurgica 16 (1982) 995–999.

    Article  Google Scholar 

  60. S.S. Manson and G.R. Halford, Re-examination of cumulative fatigue damage analysis — an engineering perspective, Engineering Fracture Mechanics 25(5–6) (1986) 539–571.

    Article  Google Scholar 

  61. T. Kitamura and G.R. Halford, A Nonlinear High Temperature Fracture Mechanics Basis for Strainrange Partitioning, NASA TM 4133 (1989).

  62. J.L. Chaboche and P.M. Lesne, A nonlinear continuous fatigue damage model, Fatigue and Fracture of Engineering Materials and Technology 11(1) (1988) 1–17.

    Article  Google Scholar 

  63. L. Remy, Recent developments in thermal fatigue, Proceedings International Seminar on the Inelastic Behaviour of Solids Models and Utilisation, MECAMAT, Vol. IV (1988) 1–19.

    Google Scholar 

  64. D.L. McDowell, S.D. Antolovich and R.L.T. Oehmke, Mechanistic considerations for TMF life prediction of nickel-base superalloys, Nuclear Engineering Design 133 (1992) 383–399.

    Article  Google Scholar 

  65. A. Saxena and B. Gieseke, Transients in elevated temperature crack growth, in High Temperature Fracture Mechanisms and Mechanics, EGF6, B. Bensussan and J.P. Mascarell (eds.), Mechanical Engineering Publications, London (1990) 291–309.

    Google Scholar 

  66. M.P. Miller, D.L. McDowell and R.L.T. Oehmke, A creep-fatigue-oxidation microcrack propagation model for thermomechanical fatigue, ASME Journal of Engineering Meterials and Technology 114(3) (1992) 282–288.

    Article  Google Scholar 

  67. M.P. Miller, D.L. McDowell, R.L.T. Oehmke and S.D. Antolovich, A life prediction model for thermomechanical fatigue based on microcrack propagation, ASTM STP 1186, ASTM, Philadelphia (1993) 35–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDowell, D.L. Basic issues in the mechanics of high cycle metal fatigue. Int J Fract 80, 103–145 (1996). https://doi.org/10.1007/BF00012666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012666

Keywords

Navigation