Skip to main content
Log in

Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The light-harvesting apparatus of photosynthetic organisms is highly optimized with respect to efficient collection of excitation energy from photons of different wavelengths and with respect to a high quantum yield of the primary photochemistry. In many cases the primary donor is not an energetic trap as it absorbs hypsochromically compared to the most red-shifted antenna pigment present (long-wavelength antenna). The possible reasons for this as well as for the spectral heterogeneity which is generally found in antenna systems is examined on a theoretical basis using the approach of thermal equilibration of the excitation energy. The calculations show that long-wavelength antenna pigments and heterogeneous absorption bands lead to a concentration of excitons and an increased effective absorption cross section. The theoretically predicted trapping times agree remarkably well with experimental data from several organisms. It is shown that the kinetics of the energy transfer from a long-wavelength antenna pigment to a hypsochromically absorbing primary donor does not represent a major kinetic limitation. The development of long-wavelength antenna and spectrally heterogeneous absorption bands means an evolutionary advantage based on the chromatic adaptation of photosynthetic organelles to spectrally filtered light caused by self-absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LHC:

light-harvesting complex

P:

primary donor

PSI:

Photosystem I of green plants

PS II:

Photosystem II of green plants

RC:

reaction center

X:

primary acceptor

References

  • Amesz J (1990) Pigment complexes in photosynthetic prokaryotes, structure and function. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 155–159. Plenum Press, New York

    Google Scholar 

  • Bakker JGC, vanGrondelle R and DenHollander WTF (1983) Trapping, loss and annihilation of excitations in a photosynthetic system. II. Experiments with the purple bacteria Rhodospirillum rubrum and Rhodopseudomonas capsulata. Biochim Biophys Acta 725: 508–518

    Google Scholar 

  • Bassi R, Rigoni F and Giacometti GM (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52: 1187–1206

    Google Scholar 

  • Beauregard M, Martin I and Holzwarth AR (1991) Kinetic modelling of exciton migration in photosynthetic systems. 1. Effects of pigment heterogeneity and antenna topography on exciton kinetics and charge separation yields. Biochim Biophys Acta 1060: 271–283

    Google Scholar 

  • Becker M, Nagarajan V, Middendorf D, Parson WW, Martin JE and Blankenship RE (1991a) Temperature dependence of the initial electron-transfer kinetics in photosynthetic reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta 1057: 299–312

    Google Scholar 

  • Becker M, Nagarajan V and Parson WW (1991b) Properties of the excited-singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents. J Am Chem Soc 113: 6840–6848

    Google Scholar 

  • Bergström H, Sundström V, vanGrondelle R, Akesson E and Gillbro T (1986) Energy transfer within the light-harvesting B800–850 pigment-protein complex of Rhodobacter sphaeroides. Biochim Biophys Acta 852: 279–287

    Google Scholar 

  • Bergström H, Sundström V, vanGrondelle R, Gillbro T and Cogdell RJ (1988) Energy transfer dynamics of isolated B800–850 and B800–820 pigment-protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim Biophys Acta 936: 90–98

    Google Scholar 

  • Bittersmann E Blankenship RE and Woodbury NW (1990) Picosecond fluorescence studies of Rhodopseudomonas viridis. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 169–172. Kluwer Academic Publishers, Dordrecht/Boston

    Google Scholar 

  • Borisov AY, Gadonas RA, Danielius RV, Piskarskas AS and Razjivin AP (1982) Minor component B-905 of light-harvesting antenna in Rhodopspirillum rubrum chromatophores and the mechanism of singlet-singlet annihilation as studied by difference selective picosecond spectroscopy. FEBS Lett 138: 25–28

    Article  Google Scholar 

  • Breton J, Martin J-L, Migus A, Antonetti A and Orszag A (1986) Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci USA 83: 5121–5125

    Google Scholar 

  • Brown JS and Schoch S (1981) Spectral analysis of chlorophyll-protein complexes from higher plant chloroplasts. Biochim Biophys Acta 636: 201–209

    PubMed  Google Scholar 

  • Brune DC, King GH, Infosino A, Steiner T, Thewalt MLW and Blankenship RE (1987) Antenna organization in green photosynthetic bacteria. 2. Exciton transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus. Biochemistry 26: 8652–8658

    PubMed  Google Scholar 

  • Carithers RP and Parson WW (1975) Delayed fluorescence from Rhodopseudomonas viridis following single flashes. Biochim Biophys Acta 387: 194–211

    PubMed  Google Scholar 

  • Causgrove TP, Yang S and Struve WS (1989) Polarized pump-probe spectroscopy of Photosystem I antenna excitation transport. J Phys Chem 93: 6844–6850

    Google Scholar 

  • Clayton RK (1966) Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. Photochem Photobiol 5: 669–677

    Google Scholar 

  • Connolly JS, Samuel EB and Janzen AF (1982) Effects of solvent on the fluorescence properties of bacteriochlorophyll a. Photochem Photobiol 36: 565–574

    Google Scholar 

  • DenHollander WTF and Duysens LNM (1985) A random-walk calculation of the quantum yield of photosynthetic processes as a function of molecular-excitation transfer parameters. Physiol Vég 23: 523–534

    Google Scholar 

  • Deprez J, Trissl H-W and Breton J (1986) Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution. Proc Natl Acad Sci USA 83: 1699–1703

    Google Scholar 

  • Deprez J, Paillotin G, Dobek A, Leibl W, Trissl H-W and Breton J (1990) Competition between energy trapping and exciton annihilation in the lake model of the photosynthetic membrane of purple bacteria. Biochim Biophys Acta 1015: 295–303

    Google Scholar 

  • Dring MJ (1981) Chromatic adaptation in benthic marine algae: An examination of its ecological significance using a theoretical model. Limnol Oceanogr 26: 271–284

    Google Scholar 

  • Eads DD, Castner EW, Alberte RS, Mets L and Fleming GR (1989) Direct observation of energy transfer in a photosynthetic membrane: Chlorophyll b to Chlorophyll a transfer in LHC. J Phys Chem 93: 8271–8275

    Google Scholar 

  • Feick R and Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23: 3693–3700

    Google Scholar 

  • Fetisova ZG, Borisov AY and Fok MV (1985) Analysis of structure-function correlations in light-harvesting photosynthetic antenna: Structure optimization parameters. J Theor Biol 112: 41–75

    Google Scholar 

  • Freiberg AM, Godik VI, Pullerits T and Timpmann K (1988) Directed picosecond excitation transport in purple photosynthetic bacteria. Chem Phys 128: 227–235

    Article  Google Scholar 

  • Freiberg AM, Godik VI, Pullerits T and Timpman K (1989) Picosecond dynamics of directed exciton transfer in spectrally heterogeneous light-harvesting antenna of purple bacteria. Biochim Biophys Acta 973: 93–104

    Google Scholar 

  • French CS, Brown JS and Lawrence MC (1972) Four universal forms of chlorophyll a. Plant Physiol 49: 421–429

    Google Scholar 

  • Gillbro T, Sundström V, Sandström A, Spangfort M and Andersson B (1985) Energy transfer within the isolated light-harvesting chlorophyll a/b protein of Photosystem II (LHC-II). FEBS Lett 193: 267–270

    Article  Google Scholar 

  • Goedheer JHC (1981) Comparison of the long-wave chlorophyll fluorescence in various green and blue-green algae and diatoms. Photosynth Res 2: 49–60

    Google Scholar 

  • Golecki JR and Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch microbiol 148: 236–241

    Google Scholar 

  • Griebenow K, Müller MG and Holzwarth AR (1991) Pigment organization and energy transfer in green bacteria. 3. Picosecond energy transfer kinetics within the B806–866 bacteriochlorophyll a antenna complex isolated from Chloroflexus aurantiacus. Biochim Biophys Acta 1059: 226–232

    Google Scholar 

  • Halldal P (1968) Photosynthetic capacties and photosynthetic action spectra of endozoic algae of the massive coral favia. Biol Bull 134: 411–424

    Google Scholar 

  • Hemelrijk PW, Kwa SLS, vanGrondelle R and Dekker JP (1992) Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim Biophys Acta 1098: 159–166

    Google Scholar 

  • Hodges M and Moya I (1986) Time-resolved fluorescence studies of photosynthetic membranes: Resolution and characterisation of four kinetic components. Biochim Biophys Acta 849: 193–202

    Google Scholar 

  • Hoff AJ (1987) Electron paramagnetic resonance in photosynthesis. In: Amesz J (ed) Photosynthesis, pp 97–123. Elsevier, Amsterdam/New York

    Google Scholar 

  • Holt AS and Clayton RK (1965) Light-induced absorbancy changes in Einhjellens' Rhodopseudomonas. Photochem Photobiol 4: 829–831

    PubMed  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1989) Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chem Phys Lett 160: 1–7

    Article  Google Scholar 

  • Holzwarth AR (1986) Fluorescence lifetimes in photosynthetic systems. Photochem Photobiol 43: 707–725

    Google Scholar 

  • Holzwarth AR, Wendler J and Haehnel W (1985) Time-resolved picosecond fluorescence spectra of the antenna chlorophylls in Chlorella vulgaris. Resolution of Photosystem I fluorescence. Biochim Biophys Acta 807: 155–167

    Google Scholar 

  • Holzwarth AR Brock H and Schatz GH (1987) Picosecond transient absorbance spectra and fluorescence decay kinetics in Photosystem II particles. In: Biggins J (ed) Progress in Photosynthesis Research, Vol I, pp 67–69. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Holzwarth AR, Müller MG and Griebenow K (1990) Picosecond energy transfer kinetics between pigment pools in different preparations of chlorosomes from the green bacterium Chloroflexus aurantiacus Ok-70-fl. J Photochem Photobiol B: Biol 5: 457–465

    Article  Google Scholar 

  • Hsu B-D (1992) The active Photosystem II centers can make a significant contribution to the initial fluorescence rise from Fo to Fi. Plant Sci 81: 169–174

    Article  Google Scholar 

  • Hunter CN, Kramer HJM and vanGrondelle R (1985) Linear dichroism and fluorescence emission of antenna complexes during photosynthetic unit assembly in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 807: 44–51

    Google Scholar 

  • Hunter CN, vanGrondelle R and vanDorssen RJ (1989) The construction and properties of a mutant of Rhodobacter sphaeroides with the LH1 antenna as the sole pigment protein. Biochim Biophys Acta 973: 383–389

    Google Scholar 

  • Kleinherenbrink FAM, Cheng P, Amesz J and Blankenship RE (1993) Lifetimes of bacteriochlorophyll fluorescence in Rhodopseudomonas viridis and Heliobacterium chlorum at low temperatures. Photochem Photobiol (in press)

  • Kramer HJM, Pennoyer JD, vanGrondelle R, Westerhuis WHJ, Niederman RA and Amesz J (1984) Low-temperature optical properties and pigment organization of the B875 light-harvesting bacteriochlorophyll-protein complex of purple photosynthetic bacteria. Biochim Biophys Acta 767: 335–344

    Google Scholar 

  • Larkum AWD and Barrett J (1983) Light-harvesting processes in algae. Adv Bot Res 10: 1–219

    Google Scholar 

  • Leibl W, Breton J, Deprez J and Trissl H-W (1989) Photo-electric study on the kinetics of trapping and charge stabilization in oriented PS II membranes. Photosynth Res 22: 257–275

    Google Scholar 

  • Lin S, vanAmerongen H and Struve WS (1991) Ultrafast pump-probe spectroscopy of bacteriochlorophyll c antennae in bacteriochlorophyll a-containing chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1060: 13–24

    Google Scholar 

  • Lyle PA and Struve WS (1991) Temperature dependence of antenna excitation transport in native Photosystem I particles. J Phys Chem 95: 4152–4158

    Google Scholar 

  • Marchiarullo MA and Ross RT (1985) Resolution of component spectra for spinach chloroplasts and green algae by means of factor analysis. Biochim Biophys Acta 807: 52–63

    Google Scholar 

  • Martin J-L, Breton J, Hoff AJ, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8±0.2 psec. Proc Natl Acad Sci USA 83: 957–961

    Google Scholar 

  • Matthews BW and Fenna RE (1980) Structure of a green bacteriochlorophyll protein. Acc Chem Res 13: 309–317

    Google Scholar 

  • McCauley SW, Bittersmann E and Holzwarth AR (1989) Time-resolved ultrafast blue-shifted fluorescence from pea chloroplasts. FEBS Lett 249: 285–288

    Article  Google Scholar 

  • Miller M, Cox RP and Gillbro T (1991) Energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus: Studies using picosecond absorbance spectroscopy. Biochim Biophys Acta 1057: 187–194

    Google Scholar 

  • Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki I, Lin S, Knox RS, Wittmershaus BP, Brune DC and Black MT (1989) Excitation energy flow in chlorosome antennas of green photosynthetic bacteria. J Phys Chem 93: 7503–7509

    Google Scholar 

  • Moog RS, Kuki A, Fayer D and Boxer SG (1984) Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: Orientation of the chlorophyll S1 transition dipole. Biochemistry 23: 1564–1571

    PubMed  Google Scholar 

  • Müller MG Griebenow K and Holzwarth AR (1990) Fluorescence lifetime measurements of energy transfer in chlorosomes and living cells of Chloroflexus aurantiacus OK 70-fl. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 177–180. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Müller MG, Griebenow K and Holzwarth AR (1991) Primary processes in isolated photosynthetic bacterial reaction centres from Chloroflexus aurantiacus studied by picosecond fluorescence spectroscopy. Biochim Biophys Acta 1098: 1–12

    Google Scholar 

  • Nuijs AM, Vasmel H, Duysens LNM and Amesz J (1986) Antenna and reaction-center processes upon picosecond-flash excitation of membranes of the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 849: 316–324

    Google Scholar 

  • Owens TG, Webb SP, Mets LJ, Alberte RS and Fleming GR (1987) Antenna size dependence of fluorescence decay in the core antenna of Photosystem I: Estimates of charge separation and energy transfer rates. Proc Natl Acad Sci USA 84: 1532–1536

    PubMed  Google Scholar 

  • Owens TG, Webb SP, Mets L, Alberte RS and Fleming GR (1989) Antenna structure and excitation dynamics in Photosystem I. II. Studies with mutants of Chlamydomonas reinhardtii lacking Photosystem II. Biophys J 56: 95–106

    PubMed  Google Scholar 

  • Pearlstein RM (1982) Exciton migration and trapping in photosynthesis. Photochem Photobiol 35: 835–844

    Google Scholar 

  • Philipson KD and Sauer K (1972) Exciton interaction in a bacteriochlorophyll-protein from Chloropseudomonas ethylica. Absorption and circular dichroism at 77 K. Biochemistry 11: 1880–1885

    PubMed  Google Scholar 

  • Porra RJ, Thompson WA and Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975: 384–394

    Google Scholar 

  • Ruban AV, Rees DC, Noctor GD, Young A and Horton P (1991) Long-wavelength chlorophyll species are associated with amplification of high-energy excitation quenching in higher plants. Biochim Biophys Acta 1059: 355–360

    Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1988) Kinetic and energetic model for the primary processes in Photosystem II. Biophys J 54: 397–405

    Google Scholar 

  • Scherer POJ Fischer SF Hörber JKH Michel-Beyerle ME and Michel H (1985) On the temperature-dependence of the long wavelength fluorescence and absorption of Rhodopseudomonas viridis reaction centers. In: Michel-Beyerle ME (ed) Antennas and Reaction Centers of Photosynthetic Bacteria, pp 131–137. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Scherz A and Parson WW (1984) Exiton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666–678

    Google Scholar 

  • Sebban P and Moya I (1983) Fluorescence lifetime spectra of in vivo bacteriochlorophyll at room temperature. Biochim Biophys Acta 722: 436–442

    Google Scholar 

  • Shimada K, Mimuro M, Tamai N and Yamazaki I (1989) Excitation energy transfer in Rhodobacter sphaeroides analyzed by the time-resolved fluorescence spectroscopy. Biochim Biophys Acta 975: 72–79

    Google Scholar 

  • Shipman LL and Housman DL (1979) Förster transfer rates for chlorophyll a. Photochem Photobiol 29: 1163–1167

    Google Scholar 

  • Shkuropatov AY, Ganago AO and Shuvalov VA (1991) Dynamics of the excited state of the primary electron donor in reaction centers of Rhodopseudomonas viridis as revealed by hole burning at 1.7 K. Different conformational states. FEBS Lett 287: 142–145

    Article  PubMed  Google Scholar 

  • Shuvalov VA, Vasmel H, Amesz J and Duysens LNM (1986) Picosecond spectroscopy of the charge separation in reaction centers of Chloroflexus aurantiacus with selective excitation of the primary electron donor. Biochim Biophys Acta 851: 361–368

    Google Scholar 

  • Sundström V, vanGrondelle R, Bergström H, Akesson E and Gillbro T (1986) Excitation-energy transport in the bacteriochlorophyll antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides, studied by low-intensity picosecond absorption spectroscopy. Biochim Biophys Acta 851: 431–446

    Google Scholar 

  • Tapie P, Choquet Y, Breton J, Delepelaire P and Wollman F-A (1984) Orientation of Photosystem-I pigments. Investigation by low-temperature linear dichroism and polarized fluorescence emission. Biochim Biophys Acta 767: 57–69

    Google Scholar 

  • Trautman JK, Shreve AP, Violette CA, Frank HA, Owens TG and Albrecht AC (1990) Femtosecond dynamics of energy transfer in B800–850 light-harvesting complexes of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 215–219

    PubMed  Google Scholar 

  • Trissl H-W, Leibl W, Deprez J, Dobek A and Breton J (1987) Trapping and annihilation in the antenna system of Photosystem I. Biochim Biophys Acta 893: 320–332

    Google Scholar 

  • Trissl H-W, Breton J, Deprez J, Dobek A and Leibl W (1990) Trapping kinetics, annihilation, and quantum yield in the photosynthetic purple bacterium Rps. viridis as revealed by electric measurement of the primary charge separation. Biochim Biophys Acta 1015: 322–333

    Google Scholar 

  • Trissl H-W, Hecks B and Wulf K (1993) Invariable trapping times in Photosystem I upon excitation of minor long-wavelength absorbing pigments. Photochem Photobiol (in press)

  • Tronrud DE, Schmid MF and Matthews BW (1986) Structure and X-ray aminoacid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 A resolution. J Mol Biol 188: 443–454

    PubMed  Google Scholar 

  • Trosper TL, Benson DL and Thornber JP (1977) Isolation and spectral characteristics of the photochemical reaction center of Rhodopseudomonas viridis. Biochim Biophys Acta 460: 318–330

    PubMed  Google Scholar 

  • Turconi S, Schweitzer G and Holzwarth AR (1993) Temperature dependence of picosecond kinetics of a cyanobacterial Photosystem I particle. Photochem Photobiol (in press)

  • van derLaan H, Schmidt T, Visschers RW, Visscher KJ, vanGrondelle R and Völker S (1990) Energy transfer in the B800–850 antenna complex of purple bacteria Rhodobacter sphaeroides: A study by spectral hole-burning. Chem Phys Lett 170: 231–238

    Article  Google Scholar 

  • vanDorssen RJ and Amesz J (1988) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. III. Energy transfer in whole cells. Photosynth Res 15: 177–189

    Google Scholar 

  • vanDorssen RJ, Vasmel H and Amesz J (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The clorosome. Photosynth Res 9: 33–45

    Google Scholar 

  • vanDorssen RJ, Plijter JJ, Dekker JP, DenOuden A, Amesz J and vanGorkom HJ (1987) Spectroscopic properties of chloroplast grana membranes and of the core of Photosystem II. Biochim Biophys Acta 890: 134–143

    Google Scholar 

  • vanDorssen RJ, Hunter CN, vanGrondelle R, Korenhof AH and Amesz J (1988) Spectroscopic properties of antenna complexes of Rhodobacter sphaeroides in vivo. Biochim Biophys Acta 932: 179–188

    Google Scholar 

  • vanGrondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811: 147–195

    Google Scholar 

  • vanGrondelle R, Kramer HJM and Rijgersberg CP (1982) Energy transfer in the B800–850-carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas capsulata. Biochim Biophys Acta 682: 208–215

    Google Scholar 

  • vanGrondelle R and Sundström V (1988) Excitation energy transfer in photosynthesis. In: Scheer H and SSchneider (eds) Photosynthetic Light-Harvesting Systems. Organization and Function, pp 403–438. De Gruyter, Berlin/New York

    Google Scholar 

  • vanGrondelle R, Bergström H, Sundström V and Gillbro T (1987) Energy transfer within the bacteriochlorphyll antenna of purple bacteria at 77K, studied by picosecond absorption recovery. Biochim Biophys Acta 894: 313–326

    Google Scholar 

  • Vasmel H, vanDorssen RJ, DeVos GJ and Amesz J (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. I. The cytoplasmic membrane. Photosynth Res 7: 281–294

    Google Scholar 

  • Visscher KJ, Bergström H, Sundström V, Hunter CN and vanGrondelle R (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177K, studied by picosecond absorption spectroscopy. Photosynth Res 22: 211–217

    Google Scholar 

  • Vos M, vanDorssen RJ, Amesz J, vanGrondelle R and Hunter CN (1988) The organization of the photosynthetic apparatus of hodobacter sphaeroides studies of antenna mutants using singlet-singlet quenching. Biochim Biophys Acta 933: 132–140

    Google Scholar 

  • Wang RT and Myers J (1977) Reverse energy transfer from chlorophyll to phycobilin in Anacystis nidulans. Plant Cell Physiol Special Issue: 3–7

  • Wasielewski MR, Johnson DG, Seibert M and Govindjee (1989) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500-fs time resolution. Proc Natl Acad Sci USA 86: 524–528

    Google Scholar 

  • Whitten WB, Olson JM and Pearlstein RM (1980) Sevenfold exciton splitting of the 810-nm band in bacterio-chlorophyll a-proteins from green photosythetic bacteria. Biochim Biophys Acta 591: 203–207

    PubMed  Google Scholar 

  • Wilhelm C (1990) The biochemistry and physiology of light-harvesting processes in chlorophyll b- and chlorophyll c-containing algae. Plant Physiol Biochem 28: 293–306

    Google Scholar 

  • Wittmershaus BP (1987) Measurements and kinetic modeling of picosecond time-resolved fluorescence from Photosystem I and chloroplasts. In: Biggins J (ed) Progress in Photosynthesis Research, Vol 1, pp 75–82. Martinus Nijhoff Publishers, Dordrecht/Boston

    Google Scholar 

  • Wittmershaus BP, Berns DS and Huang C (1987) Picosecond time-resolved fluorescence from detergent-free Photosystem I particles. Biophys J 52: 829–836

    Google Scholar 

  • Wittmershaus BP, Woolf VM and Vermaas WFJ (1992) Temperature dependence and polarization of fluorescence from Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 31: 75–87

    Google Scholar 

  • Zankel KL and Clayton RK (1969) ‘Uphill’ energy transfer in a photosynthetic bacterium. Photochem Photobiol 9: 7–15

    PubMed  Google Scholar 

  • Zhang FG, Gillbro T, vanGrondelle R and Sundström V (1992a) Dynamics of energy transfer and trapping in the light-harvesting antenna of Rhodopseudomonas viridis. Biophys J 61: 694–703

    PubMed  Google Scholar 

  • Zhang FG, vanGrondelle R and Sundström V (1992b) Pathways of energy flow through the light-harvesting antenna of the photosynthetic purple bacterium Rhodobacter sphaeroides. Biophys J 61: 911–920

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trissl, HW. Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35, 247–263 (1993). https://doi.org/10.1007/BF00016556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016556

Key words

Navigation