Skip to main content
Log in

Analysis of creep crack growth by grain boundary cavitation

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Intergranular creep crack growth in metals at high temperatures is analysed by assuming that the crack advances when cavities coalesce on grain boundary facets approximately normal to the maximum principal tensile stress. The analyses are based on a material model that describes the nucleation and growth of grain boundary cavities, accounting for diffusive growth as well as growth by dislocation creep of the surrouding grains, and also incorporating the effect of grain boundary sliding. Plane strain center cracked panels are analysed by a numerical method that fully accounts for the development of damage in every point of the specimen, and the solutions are compared with crack growth rates predicted by a simple model based on the singular stress fields around the tip of a sharp crack. The development of crack growth rates and the general crack growth patterns predicted by this material model are determined for a range of material parameters, including cases where failure occurs at small strains as well as cases where failure occurs at large strains.

Résumé

On analyse la croissance d'une fissure de fluage intergranulaire dans les métaux à hautes températures en supposant que la fissure progresse lorsque s'effectue une coalescence de cavités sur les faces des frontières de grains, dans une direction sensiblement normale par rapport à la tension principale maximum. L'analyse est basée sur un modèle de matériau qui décrit la nucléation et la croissance des cavités aux frontières des grains. tenant compte à la fois d'une croissance diffusive et d'une croissance associée au fluage des grains voisins, et incorporant les effets de glissement des frontières de grain. On analyse des panneaux à fissure centrale en état plan de déformation à l'aide d'une méthode numérique qui tient compte au développement de l'endommagement en chaque point de l'éprouvette. On compare les solutions avec les vitesses de propagation de fissure dérivées d'un modèle simple basé sur les champs de contraintes singulières règnant autour de l'extrémité d'une fissure aiguë. Le développement des vitesses de croissance d'une fissure, et l'aspect général de la propagation d'une fissure prédits par ce modèle ont été établis pour une large gamme de paramètres de matériau, et en considérant aussi bien les cas où se produit une rupture sous de faibles déformations, que les cas où de grandes déformations sont requises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Taira, R.Ohtani and T.Kitamura, Journal of Engineering Materials and Technology 101 (1979) 155–161.

    Google Scholar 

  2. R. Ohtani, in Creep in Structures (eds. A.R.S. Ponter and D.R. Hayhurst) Springer-Verlag (1981) 542–563.

  3. S.Jansson, “Creep Crack Growth in Austenitic Stainless Steel under Biaxial Loading”. Division of Solid Mechanics — Report, Chalmers University of Technology, Göteborg, Sweden (1985).

    Google Scholar 

  4. H. Riedel, Creep Crack Growth (ed. R. Raj) American Society for Metals (to be published).

  5. E.Maas and A.Pineau, Engineering Fracture Mechanics 22 (1985) 307–325.

    Google Scholar 

  6. A.Saxena, H.A.Ernst and J.D.Landes, International Journal of Fracture 23 (1983) 245–257.

    Google Scholar 

  7. D.S.Wilkinson and V.Vitek, Acta Metallurgica 30 (1982) 1723–1732.

    Article  Google Scholar 

  8. J.L. Bassani, in Creep and Fracture of Engineering Materials and Structures (eds. B. Wilshire and D.R.J. Owen) Pineridge Press (1981) 329–344.

  9. D.R.Hayhurst, P.R.Brown and C.J.Morrison, Philosophical Transactions, Royal Society London A 311 (1984) 131–158.

    Google Scholar 

  10. L.M.Kachanov, Izv. Akad. Nauk. USSR, Otd. Tekh. Nauk 8 (1958) 26.

    Google Scholar 

  11. V.Tvergaard, Acta Metallurgica 32 (1984) 1977–1990.

    Article  Google Scholar 

  12. V.Tvergaard, Journal of the Mechanics and Physics of Solids 33 (1985) 447–469.

    Article  Google Scholar 

  13. J.R.Rice, Acta Metallurgica 29 (1981) 675–681.

    Article  Google Scholar 

  14. J.W.Hutchinson, Acta Metallurgica 31 (1983) 1079–1088.

    Article  Google Scholar 

  15. D.Hull and D.E.Rimmer, Philosophical Magazine 4 (1959) 673–687.

    Google Scholar 

  16. A.C.F.Cocks and M.F.Ashby, Progress in Materials Science 27 (1982) 189–244.

    Article  Google Scholar 

  17. A.S.Argon, in Recent Advances in Creep and Fracture of Engineering Materials and Structures (eds. B.Wilshire and D.R.J.Owen) 1, Pinerage Press, U.K. (1982).

    Google Scholar 

  18. A.Needleman and J.R.Rice, Acta Metallurgica 28 (1980) 1315–1332.

    Article  Google Scholar 

  19. T.-L.Sham and A.Needleman, Acta Metallurgica 31 (1983) 919–926.

    Article  Google Scholar 

  20. B.F.Dyson, Metal Science 10 (1976) 349–353.

    Google Scholar 

  21. V.Tvergaard, Acta Metallurgica 34 (1985) 243–256.

    Article  Google Scholar 

  22. M.Y.He and J.W.Hutchinson, Journal of Applied Mechanics 48 (1981) 830–840.

    Google Scholar 

  23. V.Tvergaard, Mechanics of Materials 4 (1985) 181–196.

    Article  Google Scholar 

  24. P.M.Anderson and J.R.Rice, Acta Metallurgica 33 (1985) 409–422.

    Article  Google Scholar 

  25. T.-J.Chuang, K.I.Kagawa, J.R.Rice and L.B.Sills, Acta Metallurgica 27, 265–284 (1979).

    Article  Google Scholar 

  26. V.Tvergaard, Journal of the Mechanics and Physics of Solids 32 (1984) 373–393.

    Article  Google Scholar 

  27. B.F.Dyson, Scripta Metallurgica 17 (1983) 31–37.

    Article  Google Scholar 

  28. A.S. Argon, C.W. Lau, B. Ozmat and D.M. Parks, in Fundamentals of Deformation and Fracture (ed. K.J. Miller) Cambridge University Press (to appear).

  29. H. Riedel and J.R. Rice, in Fracture Mechanics: Twelfth Conference ASTM STP 700, American Society for Testing of Materials (1980) 112–130.

  30. J.L.Bassani and F.A.McClintock, International Journal of Solids Structures 17 (1981) 479–492.

    Google Scholar 

  31. J.W.Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.

    Article  Google Scholar 

  32. J.R.Rice and G.F.Rosengren, Journal of the Mechanics and Physics of Solids 16, (1968) 1–12.

    Article  Google Scholar 

  33. C.F. Shih, Tables of Hutchinson-Rice-Rosengren Singular Field Quantities, Brown University Report MRL E-147 (1983).

  34. J.D.Eshelby, in Inelastic Behaviour of Solids (eds. M.F.Kanninen et al.) McGraw-Hill, New York (1970) 77–115.

    Google Scholar 

  35. R.Raj and S.Baik, Metal Science 14 (1980) 385–393.

    Google Scholar 

  36. C.Y.Hui and H.Riedel, International Journal of Fracture 17 (1981) 409–425.

    Google Scholar 

  37. D.E.Hawk and J.L.Bassani, “Transient Crack Growth under Creep Conditions”, Department of Mechanical Engineering and Applied Mechanics Report, University of Pennsylvania, Philadelphia (1985).

    Google Scholar 

  38. A.C.F.Cocks and M.F.Ashby, Scripta Metallurgica 16 (1982) 109–114.

    Article  Google Scholar 

  39. H.Tada, P.Paris and G.Irwin, The Stress Analysis of Cracks Handbook Del Research Corporation, Hellerstown, PA (1973).

    Google Scholar 

  40. N.L.Goldman and J.W.Hutchinson, International Journal of Solids Structures 11 (1975) 575–591.

    Article  Google Scholar 

  41. H. Riedel, in Fundamentals of Deformation and Fracture (ed. K.J. Miller) Cambridge University Press (to appear).

  42. D.Pierce, C.F.Shih and A.Needleman, Comput. Struct. 18 (1984) 875–887.

    Article  Google Scholar 

  43. V.Tvergaard, Journal of the Mechanics and Physics of Solids 30 (1982) 399–425.

    Article  Google Scholar 

  44. V.Tvergaard and A.Needleman, Acta Metallurgica 32 (1984) 157–169.

    Article  Google Scholar 

  45. A.Needleman and V.Tvergaard, Journal of the Mechanics and Physics of Solids 32 (1984) 461–490.

    Article  Google Scholar 

  46. D.R.Hayhurst, P.R.Dimmer and C.J.Morrison, Philosophical Transactions Royal Society, London A 311 (1984) 103–129.

    Google Scholar 

  47. R.M.McMeeking, Journal of the Mechanics and Physics of Solids 25 (1977) 357–381.

    Article  Google Scholar 

  48. A. Needleman and V. Tvergaard, in Elastic-Plastic Fracture: Second Symposium, Vol. I — Inelastic Crack Analysis, ASTM STP 803 (eds. C.F. Shih and J.P. Gudas) American Society for Testing and Materials (1983) 80–115.

  49. R.M. McMeeking and D.M. Parks, in Elastic-Plastic Fracture, ASTM STP 668 (eds. J.D. Landes, J.A. Begley and G.A. Clarke) American Society for Testing and Materials (1979) 175–194.

  50. D.R.Hayhurst, C.F.Morrison and P.R.Brown, in Creep in Structures (eds. A.R.S.Ponter and D.R.Hayhurst), Springer-Verlag, Berlin (1981) 564–575.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tvergaard, V. Analysis of creep crack growth by grain boundary cavitation. Int J Fract 31, 183–209 (1986). https://doi.org/10.1007/BF00018927

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018927

Keywords

Navigation