Skip to main content
Log in

A view about the function of auxin-binding proteins at plasma membranes

  • Plant Molecular Biology Update Section
  • News and View
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The auxin-binding protein isolated from maize coleoptiles and characterized in detail describes an auxin recognition protein at the outer surface of the plasmalemma which mediates the auxin effect on cell elongation in maize coleoptiles. Its homologue in tobacco mesophyll protoplasts mediates the auxin effect on secretion. The cDNA clones of the auxin-binding protein independently sequenced in three different laboratories contain one unique open reading frame describing the auxin-binding protein as a nonmembrane-integrated glycoprotein containing the ER-sorting C-terminal tetrapeptide KDEL. There are hints but no hard facts that a membrane-located receptor for the ABP-auxin complex and a G-protein may be included in this signal-transducing pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbier-Brygoo H, Ephritikhine G, Klämbt D, Ghislain M, Guern J: Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86: 891–895 (1989).

    Google Scholar 

  2. Barbier-Brygoo H, Guern J, Ephritikhine G, Shen WH, Maurel C, Klämbt D: The sensitivity of plant protoplasts to auxins: Modulation of receptors at the plasmalemma. In: Lamb C, Beachy R (eds.) Plant Gene Transfer. UCLA Symposia New Series, vol. 129. Alan R Liss, New York, in press.

  3. Barbier-Brygoo H, Ephritikhine G, Shen WH, Delbarre A, Klämbt D, Guern J: Characterization and modulation of the sensitivity of plant protoplasts to auxin. In: Konijn T (ed) Activation and Desensitisation of Transducing Pathways Nato-ASI/Springer-Verlag, Berlin (1990), in press.

    Google Scholar 

  4. Batt S, Venis MA: Separation and localization of two classes of auxin binding sites in corn coleoptiles membranes. Planta 130: 15–21 (1976).

    Google Scholar 

  5. Bole DG, Hendershot LM, Kearny JF: Post translational association of immunoglobulin heavy chain binding protein with nascent heavy chains in non-secreting and secreting hybridomas. J Cell Biol 102: 1558–1566 (1986).

    Google Scholar 

  6. Cross JW, Briggs WR: Properties of a solubilized microsomal auxin-binding protein from coleoptiles and primary levels ofZea mays. Plant Physiol 62: 152–157 (1978).

    Google Scholar 

  7. Cross JW, Briggs WR: Solubilized auxin-binding protein. Planta 146: 263–270 (1979).

    Google Scholar 

  8. Depta H, Eisele KH, Hertel R: Specific inhibitors of auxin transport: action on tissue segments andin vitro binding to membranes from maize coleoptiles. Plant Sci Lett 31: 181–192 (1983).

    Google Scholar 

  9. Dohrmann U, Hertel R, Kowalik H: Properties of auxin binding sites in different subcellular fractions from maize coleoptiles. Planta 140: 97–106 (1978).

    Google Scholar 

  10. Edman JC, Ellis L, Blacher RW, Roth RA, Rutter WA: Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317: 267–270 (1985).

    Google Scholar 

  11. Ettlinger C, Lehle L: Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178 (1988).

    Google Scholar 

  12. Hager DL, Metzel H, Krauss A: Versuche und Hypothese zur Primärwirkung des Auxins beim Steckungswachstum. Planta 100: 47–75 (1971).

    Google Scholar 

  13. Hertel R: The mechanism of auxin transport as a model for auxin action. Z Pflanzenphysiol 112: 53–67 (1983).

    Google Scholar 

  14. Hertel R, Thomson KS, Russo VEA:In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107: 325–340 (1972).

    Google Scholar 

  15. Hesse T, Feldwisch J, Balshüsemann D, Bauw G, Puype M, Vandekerckhove J, Löbler M, Klämbt D, Schell J, Palme K: Molecular cloning and structural analysis of a gene fromZea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J 8: 2453–2461 (1989).

    Google Scholar 

  16. Hicks GR, Rayle DL, Jones AM, Lomax TL: Specific affinity labelling of two plasma membrane polypeptides with an azido auxin. Proc Natl Acad Sci USA 86: 4948–4952 (1989).

    Google Scholar 

  17. Hicks GR, Rayle DL, Lomax TL: The diageotropica mutant of tomato lacks high specific activity auxin binding sites. Science 245: 52–54 (1989).

    Google Scholar 

  18. Inohara N, Shimomura S, Fukui T, Futai M: Auxin-binding protein located in the endoplasmic reticulum of maize shoots: Molecular cloning and complete primary structure. Proc Natl Acad Sci USA 86: 3564–3568 (1989).

    Google Scholar 

  19. Knauth B, Klämbt D: Is cell elongation regulated by extracellular auxin? Bot Acta (1990) in press.

  20. Kutschera U, Schopfer P. Evidence against the acid growth theory of auxin action. Planta 163: 483–493 (1985).

    Google Scholar 

  21. Kutschera U, Bergfeld R, Schopfer P: Cooperation of epidermis and inner tissue in auxin-mediated growth of maize coleoptiles. Planta 170: 168–180 (1987).

    Google Scholar 

  22. Löbler M, Klämbt D: Auxin-binding protein from coleoptile membranes of corn (Zea mays L.) I. Purification by immunological methods and characterization. J Biol Chem 260: 9848–9853 (1985).

    Google Scholar 

  23. Löbler M, Klämbt D: Auxin-binding protein from coleoptile membranes of corn (Zea mays L.) II. Localization of a putative auxin receptor. J Biol Chem 260: 9854–9859 (1985).

    Google Scholar 

  24. Löbler M, Simon K, Hesse T, Klämbt D: Auxin receptors in target tissue. In: Fox EJ, Jacobs M (eds), Molecular Biology of Plant Growth Control. pp. 279–288. Alan R. Liss, New York (1987).

    Google Scholar 

  25. Murphy GJP: A reassessment of the binding of naphthaleneacetic acid by membrane preparations from maize. Planta 149: 417–426 (1980).

    Google Scholar 

  26. Pelham HRB: Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46: 959–961 (1986).

    Google Scholar 

  27. Pelham HRB: Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J 7: 913–918 (1988).

    Google Scholar 

  28. Rayle DL: Auxin-induced hydrogen-ion secretion inAvena coleoptiles and its implications. Planta 114: 63–73 (1973).

    Google Scholar 

  29. Rayle DL, Cleland R: Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46: 250–253 (1970).

    Google Scholar 

  30. Shimomura S, Sotobayashi T, Futai M, Fukui T: Purification and properties of an auxin-binding protein from maize shoot membranes. J Biochem 99: 1513–1524 (1986).

    Google Scholar 

  31. Shimomura S, Inohara N, Fukui T, Futai M: Different properties of two types of auxin-binding sites in membranes from maize coleoptiles. Planta 175: 558–566 (1988).

    Google Scholar 

  32. Tappeser B, Wellnitz D, Klämbt D: Auxin affinity proteins prepared by affinity chromatography. Z Pflanzenphysiol 101: 295–302 (1981).

    Google Scholar 

  33. Thimann KV, Schneider CL: Differential growth in plant tissues. Am J Bot 25: 627–641 (1938).

    Google Scholar 

  34. Thomson KS, Leopold AC:In vitro binding of morphactins and NPA in corn coleoptiles and their effects on auxin transport. Planta 115: 259–270 (1974).

    Google Scholar 

  35. Tillmann U, Viola G, Kayser B, Siemeister G, Hesse T, Palme K, Löbler M, Klämbt D: cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.). Isolation and characterization by immunological methods. EMBO J 8: 2463–2467 (1989).

    Google Scholar 

  36. Venis MA: Solubilization and partial purification of auxin-binding sites of corn membrane. Nature 266: 268–269 (1977).

    Google Scholar 

  37. Venis MA: Auxin-binding proteins in maize: Purification and receptor function. In: Fox EJ, Jacobs M (eds) Molecular Biology of Plant Growth Control, pp. 219–228, Alan R. Liss, New York (1987).

    Google Scholar 

  38. Walton JD, Ray PM: Evidence for receptor function of auxin-binding sites in maize. Plant Physiol 68: 1334–1338 (1981).

    Google Scholar 

  39. Zbell B, Walter C: About the search for the molecular action of high-affinity auxin-binding sites on membrane-localized rapid phosphoinositide metabolism in plant cell. In: Klämbt D (ed) Plant Hormone Receptors, pp. 141–153, Nato-ASI, Springer, Berlin (1987).

    Google Scholar 

  40. Zbell B, Walter-Back C: Signal transduction of auxin on isolated plant cell membranes: Indications for a rapid polyphosphoinositide response stimulated by indoleacetic acid. J Plant Physiol 133: 353–360 (1988).

    Google Scholar 

  41. Zbell B, Walter-Back C, Hohenadel H, Schwendemann J: In: Pharis D, Rood SB (eds) Plant Growth Substances 1988. Springer, Berlin (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klämbt, D. A view about the function of auxin-binding proteins at plasma membranes. Plant Mol Biol 14, 1045–1050 (1990). https://doi.org/10.1007/BF00019401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019401

Keywords

Navigation