Skip to main content
Log in

Time-dependent deformation and fracture of steel between 20°C and 400°C

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The time-dependent deformation and cracking behavior of the quenched and tempered steel 15 NiCuMoNb 5 was investigated in the temperature range 20°C to 400°C. Fracture mechanics tests were carried out under various loading conditions including load-hold times of up to three weeks. The time-dependent crack growth can be described by the crack resistance (J R-) curve. Only above 300°C, the J R-curves obtained from constant-load tests start to deviate substantially from constant-displacement-rate tests. In this temperature range, the C t-parameter, which has been developed for creep crack growth testing, can be used to describe crack growth rates. For practical purposes, it is important to note that hold-time effects reduce the load-bearing capacity of cracked specimens by less than 10 percent for the present material and testing conditions.

Résumé

On a étudié la déformation en fonction du temps et le comportement à la fissuration entre 20 et 400°C de l'acier trempé et revenu 15 NiCuMoNb 5. On a procédé à des essais de mécanique de rupture sous diverses conditions de mise en charge, y compris un maintien de la charge sur des durées allant jusqu'à trois semaines. On peut décrire la croissance en fonction du temps de la fissure par la courbe de résistance à la fissuration J R. Ce n'est qu'au delà de 300°C que les courbes J R obtenues par des essais à charge constante commencent à dévier de manière substantielle de celles obtenues par des essais à vitesse de déplacement constante. Dans cette gamme de température, le paramètre Ct qui a été conçu pour les essais de croissance de fissures de fluage, peut être utilisé pour décrire la vitesse de croissance de la fissure. Pratiquement, il est intéressant de noter que les effets de maintien de la charge sont de réduire la capacité de portance des échantillons fissurés de moins de 10%, et ceci pour les conditions de matériaux et d'essais adoptées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM-E 813–81: Standard Test for J Ic, a Measure of Fracture Toughness — Annual Book of ASTM Standards, Part 10 (1981) 810–828.

  2. J.W. Hutchinson and P.C. Paris, in Elastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials (1979) 37–64.

  3. G.Green and J.F.Knott, Journal of the Mechanics and Physics of Solids 23 (1975) 167–184.

    Article  Google Scholar 

  4. S.Tsuru and S.J.Garwood, in Mechanical Behavior of Materials, vol. 3, K.J.Miller and R.F.Smith (eds.), Pergamon Press, Oxford (1980) 519–528.

    Google Scholar 

  5. H.-D.Schulze and H.Fuhlrott, International Journal of Pressure Vessels and Piping 8 (1980) 131–142.

    Article  Google Scholar 

  6. C.Wüthrich, in Vorträge der 15. Sitzung des Arbeitskreises Bruch-vorgänge, Deutscher Verband für 070 Material-prüfung, Berlin (1983) 151–160 (in German).

    Google Scholar 

  7. T. Ingham and E. Morland, in Elastic-Plastic Fracture: Second Symposium, Vol. 1 — Inelastic ASTM STP 803, C.F. Shih and J.P. Gudas (eds.), American Society for Testing and Materials (1983) I-721-I-746.

  8. S.J.Garwood, Nuclear Engineering and Design 91 (1986) 179–206.

    Article  Google Scholar 

  9. M.M. Little, E. Krempl and C.F. Shih in Elastic-Plastic Fracture, Second Symposium, Vol. 1 — Inelastic Crack Analysis, ASTM STP 803, C.F. Shih and J.P. Gudas (eds.), American Society for Testing and Materials (1983) I-615-I-636.

  10. B. Östensson, International Atomic Energy Agency, Report IAEA-SM-218/17 (1977).

  11. B.Voß, T.Hollstein, M.Rödig and G.Scheidler, in Vorträge der 17 Sitzung des 070 Arbeitskreises Bruchvorgänge, Deutscher Verband für Materialprüfung, Berlin (1985) 101–113, (in German).

    Google Scholar 

  12. J.G.Blauel, L.Hodulak, T.Hollstein and B.Voß, International Journal of Pressure Vessels and Piping 17 (1984) 139–162.

    Article  Google Scholar 

  13. E.Amar and A.Pineau, Engineering Fracture Mechanics 22 (1985) 1061–1071.

    Article  Google Scholar 

  14. S.J.Garwood, in Applications of Fracture Mechanics to Materials and Structures, G.C.Sih, E.Sommer and W.Dahl (eds.), Martinus Nijhoff Publishers, The Hague (1984) 939–950.

    Google Scholar 

  15. V. Kumar, M.D. German and C.F. Shih, An Engineering Approach for Elastic-Plastic Fracture Analysis, Report NP-1931 on Project 1237–1 for Electric Power Research Institute, Palo Alto (1981).

  16. V. Kuhnle, PhD thesis, Rheinisch-Westfälische Technische Hochschule, Fakultät für Bergbau und Hüttenwesen, Aachen (1986).

  17. E.W.Hart, Journal of Engineering Materials and Technology 98 (1976) 193–202.

    Google Scholar 

  18. E.W.Hart, Journal of Engineering Materials and Technology 106 (1984) 322–325.

    Google Scholar 

  19. J.R.Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  20. H.Riedel, Journal of the Mechanics and Physics of Solids 29 (1981) 35–49.

    Article  Google Scholar 

  21. A.Saxena, H.A.Ernst and J.D.Landes, International Journal of Fracture 23 (1983) 245–258.

    Google Scholar 

  22. J.D. Landes and J.A. Begley, in Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials (1976) 128–148.

  23. K. Ohji, K. Ogura and S. Kubo, Preprint of Japanese Society of Mechanical Engineers, No. 640–11 (1974) 207 (in Japanese).

  24. A.Saxena and J.D.Landes, in Advances in Fracture Research (Fracture 84) vol. 6, P.Rama Rao et al. (eds.), Pergamon Press, Oxford (1984) 3977–3988.

    Google Scholar 

  25. A. Saxena, in Fracture Mechanics: Seventeenth Symposium, ASTM STP 905, J.H. Underwood et al. (eds.), American Society for Testing and Materials (1986) 185–201.

  26. H.Riedel, in Flow and Fracture at Elevated Temperatures, R.Raj (ed.), American Society for Metals, Metals Park, Ohio (1985) 149–177.

    Google Scholar 

  27. C.F. Shih, Tables of the Hutchinson-Rice-Rosengren Singular Field Quantities, Brown University Report MRL E-147, Providence, RI (1983).

  28. H. Riedel, in Creep in Structures, A.R.S. Ponter and D.R. Hayhurst (eds.), Springer-Verlag (1981) 504–519.

  29. H. Riedel, Fracture at High Temperatures, Springer-Verlag (1987).

  30. R. Ehlers and H. Riedel, in Advances in Fracture Research (ICF5), vol. 2, D.Francois et al. (eds.), Pergamon Press, Oxford (1980) 691–698.

    Google Scholar 

  31. R. Ehlers, PhD thesis, Fakultät für Bergbau und Hüttenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen (1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhnle, V., Riedel, H. Time-dependent deformation and fracture of steel between 20°C and 400°C. Int J Fract 34, 179–194 (1987). https://doi.org/10.1007/BF00019716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019716

Keywords

Navigation