Skip to main content
Log in

Past, present and future opportunities in breeding for disease resistance, with examples from wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

This introductory chapter contains some general comments about plant breeding and breeding for disease resistance. The use of disease resistant crop plants is an environmentally favourable method of controlling disease but the process of breeding for disease resistance is subject to several constraints. Among them is the variability of pathogens in relation to host resistance. Some parts of this variation can be resolved into gene-for-gene interactions, but the boundaries within which such interactions can be detected are not sharp. The discussion of this variation is illustrated by reference to some important diseases of wheat, especially yellow rust, septoria and eyespot. The objective of obtaining durable resistance is discussed and some contributions of new genetical and molecular techniques to breeding for resistance are considered. It is suggested that new technology will enhance breeding for disease resistance but that established techniques of plant breeding will remain relevant and important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, C.C. & K., Isenbeck, 1930. Biologische Specialisierung vonPuccinia glumarum tritici Eriksson and Henning. Phytopathol. 2: 87–98.

    Google Scholar 

  • Bayles, R.A., M.H., Channell & P.L., Stigwood, 1989. New races ofPuccinia striiformis in the United Kingdom in 1988. Cereal Rusts Bull. 17: 20–23.

    Google Scholar 

  • Biffen, R.H., 1905. Mendel's law of inheritance and wheat breeding. J. Agric. Sci. 1: 4–48.

    Google Scholar 

  • Chao, S., P.J., Sharp, A.J., Worland, E.J., Warham, R.M.D., Koebner & M.D., Gale, 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78: 495–504.

    Google Scholar 

  • Chilosi, G. & L., Corazza, 1990. Occurrence and epidemics of yellow rust on wheat in Italy. Cereal Rusts and Powdery Mildews Bull. 18: 1–19.

    Google Scholar 

  • Conner, R.L., M.D., MacDonald & E.D.P., Whelan, 1988. Evaluation of take-all resistance in wheat-alien amphiploid and chromosome substitution lines. Genome 30: 597–602.

    Google Scholar 

  • Crute, I.R., 1985. The genetic bases of relationships between microbial parasites and their hosts. pp 80–142 In: R.S.S., Fraser (Ed.) ‘Mechanisms of Resistance to Plant Diseases’. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Day, P.R., 1974. ‘Genetics of Host-Parasite Interaction’. W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Dyck, P.L. & E.R., Kerber, 1985. Resistance of the race-specific type. pp 469–500 In: A.P., Roelfs & W.R., Bushnell (Eds.) ‘The Cereal Rusts, Voll II’. Academic Press, London.

    Google Scholar 

  • El-Bedewy, R. & G., Röbbelen, 1982. Chromosomal location and change of dominance of a gene for resistance against yellow rust. Z. Pflanzenzücht. 89: 145–157.

    Google Scholar 

  • Ellingboe, A.H., 1975. Horizontal resistance: an artefact of experimental procedure? Australian Plant Pathology Soc. Newsletter 4: 44–46.

    Google Scholar 

  • Eyal, Z., Z., Amiri & I., Wahl, 1975. Physiologic specialization ofSeptoria tritici. Phytopathology 63: 1087–1091.

    Google Scholar 

  • Eyal, Z., A.L., Scharen, M.D., Huffman & J.M., Prescott, 1985. Global insights into virulence frequencies ofMycosphaerella graminicola. Phytopathology 75: 1456–1462.

    Google Scholar 

  • Flor, H.H., 1946. Genetics of pathogenicity inMelampsora lini. J. Agric. Res. 73: 335–357.

    Google Scholar 

  • Flor, H.H., 1960. The inheritance of X-ray induced mutations to virulence in a urediospore culture of race 1 ofMelampsora lini. Phytopathology 50: 603–605.

    Google Scholar 

  • Fraser, R.S.S., 1985. Genetics of host resistance to viruses and of virulence. pp 62–79 In: R.S.S., Fraser (Ed.) ‘Mechanisms of Resistance to Plant Diseases.’ Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Jenkins, G., 1984. Winter and spring wheat. pp 23–28, Annual Report of the Plant Breeding Institute 1983.

  • Johnson, R., 1978. Practical breeding for durable resistance to rust diseases in self-pollinating cereals. Euphytica 27: 529–540.

    Google Scholar 

  • Johnson, R., 1988. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. pp 63–75 In: N.W., Simmonds & S., Rajaram (Eds.) ‘Breeding Strategies for Resistance to the Rusts of Wheat’. CIMMYT, Mexico D.F.

    Google Scholar 

  • Johnson, R., 1992. Reflections of a plant pathologist on breeding for disease resistance, with emphasis on yellow rust and eyespot of wheat. Plant Pathol. 41: 239–254.

    Google Scholar 

  • Johnson, R. & D.R., Knott, 1992. Specificity in gene-for-gene interactions between plants and pathogens. Plant. Pathol. 41: 1–4.

    Google Scholar 

  • Johnson, R. & A.J., Taylor, 1972. Isolates ofPuccinia striiformis collected in England from wheat varieties Maris Beacon and Joss Cambier. Nature, Lond. 238: 105–106.

    Google Scholar 

  • Johnson, R. & A.J., Taylor, 1980. Pathogenic variation inPuccinia striiformis in relation to the durability of yellow rust resistance in wheat. Ann. Appl. Biol. 94: 283–286.

    Google Scholar 

  • Johnson, R. & C.N., Law, 1973. Cytogenetic studies on the resistance of the wheat variety Bersée toPuccinia striiformis. Cereal Rusts Bull. 1: 38–43.

    Google Scholar 

  • Johnson, R. & C.N., Law, 1975. Genetic control of durable resistance to yellow rust (Puccinia striiformis) in the wheat cultivar Hybride de Bersée. Ann. Appl. Biol. 81: 385–391.

    Google Scholar 

  • Jones, D.A., 1988. Genetic properties of inhibitor genes in flax rust that alter avirulence to virulence on flax. Phytopathology 78: 342–344.

    Google Scholar 

  • Kerber, E.R. & J.G., Green, 1980. Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can. J. Bot. 58: 1347–1350.

    Google Scholar 

  • King, J.E. & M.J., Griffin, 1985. Survey of benomyl resistance inPseudocercosporella herpotrichoides on winter wheat and barley in England and Wales in 1983. Plant Pathol. 34: 272–283.

    Google Scholar 

  • Knott, D.R. & J., Dvorak, 1976. Alien germ plasm as a source of resistance to disease. Ann. Rev. Phytopathol. 14: 211–235.

    Google Scholar 

  • Law, C.N., J.W., Snape & A.J., Worland, 1987. Aneuploidy in wheat and its uses in genetic analysis. pp71–108 In: F.G.H., Lupton, (Ed.) ‘Wheat Breeding. Its Scientific Basis’. Chapman & Hall, London.

    Google Scholar 

  • Law, C.N., R.C. Gaines, R. Johnson & A.J. Worland, 1978. The application of aneuploid techniques to a study of stripe rust resistance in wheat. pp 427–436 In: Proceedings of the 5th International Wheat Genetics Symposium, New Delhi.

  • Law, C.N. & A.J., Worland, 1991. Improving disease resistance in wheat by inactivating genes promoting disease susceptibility. IAEA Vienna, Mutation Breeding Newsletter 38: 2–5.

    Google Scholar 

  • Law, C.N., P.R., Scott, A.J., Worland & T.W., Hollins, 1975. The inheritance of resistance to eyespot (Cercosporella herpotrichoides) in wheat. Genet. Res. Camb. 25: 73–79.

    Google Scholar 

  • Lawrence, F.J., G.M.E., Mayo & K.W., Shepherd, 1981. Interactions between genes controlling pathogenicity in the flax rust fungus. Phytopathology 71: 12–19.

    Google Scholar 

  • Leonard, K.J., 1993. Durable resistance in the pathosystems: maize-northern and southern leaf blights. In: Th. Jacobs & J.E. Parlevliet (Eds.) ‘Durability of Disease Resistance’. In press.

  • Lupton, F.G.H., 1983. Winter wheat. pp 23–26, Annual Report of the Plant Breeding Institute 1982.

  • Lupton, F.G.H., 1992. Changes in varietal distribution of cereals in central and western Europe. Agro-ecological Atlas of Cereal Growing in Europe. Pudoc, Wageningen.

    Google Scholar 

  • Lupton, F.G.H. & R.C.F., Macer, 1962. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat. Trans. Br. Mycol. Soc. 45: 21–45.

    Google Scholar 

  • Macer, R.C.F., 1961. The survival ofCercosporella herpotrichoides Fron in wheat straw. Ann. Appl. Biol. 49: 165–172.

    Google Scholar 

  • Macer, R.C.F., 1966a. The formal and monosomic analysis of stripe rust (Puccinia striiformis) resistance in wheat. pp 137–142 In: Proceedings of the 2nd International Wheat Genetics Symposium, Lund, Sweden, 1963. Hereditas Supplement 2.

  • Macer, R.C.F., 1966b. Resistance to eyespot disease (Cercosporella herpotrichoides Fron) determined by a seedling test in some forms ofTriticum, Aegilops, Secale andHordeum. J. Agric. Sci. 67: 389–396.

    Google Scholar 

  • Macer, R.C.F., 1975. Plant pathology in a changing world. Trans. Br. Mycol. Soc. 65: 351–374.

    Google Scholar 

  • McIntosh, R.A., 1988. Catalogue of gene symbols for wheat. pp 1225–1323 In: T.E., Miller & R.M.D., Koebner (Eds.) Proceedings of the 7th International Wheat Genetics Symposium. IPSR Cambridge.

    Google Scholar 

  • McIntosh, R.A., 1992. Catalogue of gene symbols for wheat. 1992 supplement. Cer. Res. Commun. 20: In press.

  • McMillin, D.E., R.E., Allan & D.E., Roberts, 1988. Association of an enzyme locus and strawbreaker foot rot resistance derived fromAegilops ventricosa. Theor. Appl. Genet. 72: 743–747.

    Google Scholar 

  • Mena, M., G., Doussinault, I., Lopez-Brana, S., Arguaded, G., Garcia-Olmedo & A., Delibes, 1992. Eyespot resistance genePch-1 in H-93 wheat lines. Evidence of linkage to markers of chromosome group 7 and resolution from the endopeptidase locusEp-D1b. Theor. Appl. Genet. 83: 1044–1047.

    Google Scholar 

  • Milus, E.A. & R.F., Line, 1986a. Number of genes controlling high temperature, adult-plant resistance to stripe rust in wheat. Phytopathology 76: 93–96.

    Google Scholar 

  • Milus, E.A. & R.F., Line, 1986b. Gene action for inheritance of durable, high temperature, adult-plant resistance to stripe rust in wheat. Phytopathology 76: 435–441.

    Google Scholar 

  • Nelson, R.R., D.R., MacKenzie & G.L., Scheifele, 1970. Interaction of genes for pathogenicity and virulence inTrichometasphaeria turcica with different numbers of genes for vertical resistance inZea mays. Phytopathology 60: 1250–1254.

    Google Scholar 

  • Nicholson, P., T.W., Hollins, H.N., Rezanoor & K., Anamthawat-Jonsson, 1991. A comparison of cultural, morphological and DNA markers for the classification ofPseudocercosporella herpotrichoides. Plant Pathol. 40: 584–594.

    Google Scholar 

  • Nicholson, P., H.N. Rezanoor & T.W. Hollins, 1992. Classification of a world-wide collection of isolates ofPseudocercosporella herpotrichoides by RFLP analysis of mitochondrial and ribosomal DNA and host range. Plant Pathol 41 (In press)

  • Parlevliet, J.E., 1981. Race-non-specific disease resistance. pp 47–54 In: J.F., Jenkyn & R.T., Plumb (Eds.) ‘Strategies for the Control of Cereal Disease’. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Person, C.O., 1959. Gene for gene relationships in host: parasite systems. Can. J. Bot. 37: 1101–1130.

    Google Scholar 

  • Pink, D.A.C., F.G.A., Bennett, C.E., Caten & C.N., Law, 1983. Correlated effects of homoeologous group 5 chromosomes upon infection of wheat by yellow rust and powdery mildew. Z. Pflanzenzücht. 91: 275–294.

    Google Scholar 

  • Polley, R.W. & M.R., Thomas, 1991. Surveys of diseases of winter wheat in England and Wales, 1976–1988. Ann. Appl. Biol. 119: 1–20.

    Google Scholar 

  • Priestley, R.H., 1978. Detection of increased virulence in populations of wheat yellow rust. pp 63–70 In: P.R., Scott & A., Bainbridge (Eds.) ‘Plant Disease Epidemiology’. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Qayoum, A. & R.F., Line, 1985. High temperature, adult plant resistance to stripe rust of wheat. Phytopathology 75: 1121–1125.

    Google Scholar 

  • Riley, R., V., Chapman & R., Johnson, 1968. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res. Camb. 12: 199–219.

    Google Scholar 

  • Röbbelen, G. & E.L., Sharp, 1978. Mode of inheritance, interaction and application of genes conditioning resistance to yellow rust. Advances in Plant Breeding, Suppl. 9. Verlag Paul Parey, Berlin & Hamburg.

    Google Scholar 

  • Rufty, R.C., T.T., Hebert & C.F., Murphy, 1981. Variation in virulence in isolates ofSeptoria nodorum. Phytopathology 71: 593–596.

    Google Scholar 

  • Scharen, A.L. & Z., Eyal, 1983. Analysis of symptoms on spring and winter wheat cultivars inoculated with different isolates ofSeptoria nodorum. Phytopathology 73: 143–147.

    Google Scholar 

  • Scharen, A.L., Z., Eyal, M.D., Huffman & J.M., Prescott, 1985. The distribution of virulence genes in geographically separated populations ofLeptosphaeria nodorum. Phytopathology 75: 1463–1468.

    Google Scholar 

  • Scott, P.R., 1981. Variation in host susceptibility. pp 219–236 In: M.J., Asher & P.J., Shipton (Eds.) ‘Biology and Control of Take-all’. Academic Press, London.

    Google Scholar 

  • Scott, P.R. & T.W., Hollins, 1974. Effects of eyespot on yields of winter wheat. Ann. Appl. Biol. 78: 269–279.

    Google Scholar 

  • Scott, P.R. & T.W., Hollins, 1977. Interactions between cultivars of wheat and isolates ofCercosporella herpotrichoides. Trans. Br. Mycol. Soc. 69: 397–403.

    Google Scholar 

  • Scott, P.R., T.W., Hollins & P., Muir, 1978. Pathogenicity ofCercosporella herpotrichoides to wheat, barley, oats and rye. Trans. Br. Mycol. Soc. 65: 529–538.

    Google Scholar 

  • Scott, P.R., L., Defosse, J., Vandam & G., Doussinault, 1976. Infection of lines ofTriticum, Secale, Aegilops andHordeum by isolates ofCercosporella herpotrichoides. Trans. Br. Mycol. Soc. 66: 205–210.

    Google Scholar 

  • Singh, H. & R., Johnson, 1988. Genetics of resistance to yellow rust in Heines VII, Soissonais and Kalyansona. pp 885–890 In: T.E., Miller & R.M.D., Koebner (Eds.) Proceedings of the Seventh International Wheat Genetics Symposium, IPSR, Cambridge.

    Google Scholar 

  • Singh, R.P. & R.A., McIntosh, 1984. Complementary genes for reaction toPuccinia recondita tritici inTriticum aestivum. I. Genetic and linkage studies. Can. J. Genet. Cytol. 26: 723–735.

    Google Scholar 

  • Stubbs, R.W., 1985. Stripe rust. pp 61–101 In: A.P., Roelfs & W.R., Bushnell (Eds.) ‘The Cereal Rusts. Vol II’. Academic Press, London.

    Google Scholar 

  • Vanderplank, J.E., 1963. Plant Diseases: Epidemics and Control. Academic Press, New York.

    Google Scholar 

  • Van, Ginkel, M. & A.L., Scharen, 1988. Host-pathogen relationships of wheat andSeptoria tritici. Phytopathology 78: 762–766.

    Google Scholar 

  • Worland, A.A. & C.N., Law, 1991. Improving disease resistance in wheat by inactivating genes promoting disease susceptibility. IAEA Vienna. Mutation Breeding Newsletter, 38: 2–5.

    Google Scholar 

  • Worland, A.A., C.N., Law, T.W., Hollins, R.M.D., Koebner & A., Giura, 1988. Location of a gene for resistance to eyespot (Pseudocercosporella herpotrichoides) on chromosome 7D of bread wheat. Plant Breed. 101: 43–51.

    Google Scholar 

  • Zadoks, J.C., 1961. Yellow rust of wheat: studies in epidemiology and physiologic specialisation. Tijd. Plantenziekt. 67: 69–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R. Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63, 3–22 (1992). https://doi.org/10.1007/BF00023908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023908

Key words

Navigation