Skip to main content
Log in

A hybrid-displacement finite element model for the bending analysis of thin cracked plates

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Based on Kirchhoff's hypothesis and relevant variational principles, this work presents an assumed hybrid-dis-placement finite element model to solve the bending problems of thin cracked plates subjected to static and dynamic loadings. To provide a potential method of non-destructive testing in evaluating the integrity of structure, natural vibrations of the thin cracked plate are also studied. Since the integrand of the associated functional contains the second-order derivatives of the lateral displacement of the plate, the compatibility requirements for the lateral displacement and its normal slope at inter-element boundaries are enforced in an integral sense through the use of a Lagrangian multiplier technique. The proper singular behaviours for the bending stresses and strains are incorporated in the singular elements around the crack-tips. The static and dynamic symmetric and anti-symmetric bending stress intensity factors can be directly computed. To avoid underestimation of dynamic bending stress intensity factors, the important role of the singular elements is also demonstrated. Good correlations between the computed results and available solutions in the literature show the accuracy and efficiency of the present work. Some new solutions for the bending thin cracked plates are then drawn.

Résumé

En se basant sur I'hypothèse de Kirchoff et sur des principes adéquats d'adaptation, on présente dans ce travail un modèle par éléments finis à déplacements hydrides qui est supposé résoudre les problèmes de flexion de tôle mince soumise à des charges statiques et dynamiques. On a également étudié les vibrations naturelles de la tôle mince fissurée en vue d'établir une méthode potentielle d'essai non destructif pour évaluer l'intégrité de la structure. Comme l'intégrant de la fonction associée comporte des dérivées du second ordre du déplacement latéral de la tôle, les exigences de compatibilité pour le déplacement latéral et pour la pente normale à la liaison entre les éléments sont contenues dans un sens intégral en utilisant la technique des multiplicateurs de Lagrange. Les comportements singuliers relatifs aux contraintes et aux déformations de flexion sont incorporés dans les éléments singuliers au voisinage des pointes de la fissure. Il est possible de calculer directement les facteurs d'intensité de contraintes symétriques et antisymétriques, qu'ils soient statiques ou dynamiques. En vue d'éviter une sous-estimation des facteurs d'intensité de contrainte en flexion dynamique, on démontre également le rôle important des éléments singuliers. La précision et l'utilité de ce travail sont démontré par les bonnes corrélations obtenues entre les résultats calculés et les solutions disponibles dans la littérature. Quelques solutions nouvelles relatives à la flexion de tôle mince fissurée sont ensuite présentées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.C. Zienkiewicz, The Finite Element Method, 3rd edition, Mcgraw-Hill (1977).

  2. P. Tong, and T.H.H. Pian, International Journal of Solids and Structures 9 (1973) 313–321.

    Article  Google Scholar 

  3. P. Tong, International Journal for Numerical Methods in Engineering 2 (1970) 73–83.

    Google Scholar 

  4. S.N. Atluri, A.S. Kobayashi and M. Nakagaki, International Journal of Fracture 11 (1975) 257–271.

    Google Scholar 

  5. S.N. Atluri, M. Nakagaki and W.H. Chen, Pressure Vessel Technology, New York: ASME (1977) 579–593.

    Google Scholar 

  6. S.N. Atluri, M. Nakagaki and W.H. Chen, in Flaw Growth and Fracture, ASTM STP 631 (1977) 42–61.

  7. S.N. Atluri, M. Nakagaki and W.H. Chen, in Numerical Methods in Fracture Mechanics (1978) 52–66.

  8. S.N. Atluri, M. Nakagaki and W.H. Chen, in Elastic-plastic Fracture, ASTM STP 668 (1979) 195–213.

  9. W.H. Chen and Y.H. Huang, International Journal of Fracture 15 (1979) R73–76.

    Google Scholar 

  10. W.H. Chen and C.W. Wu, International Journal of Fracture 16 (1980) R47–51.

    Google Scholar 

  11. W.H. Chen and C.H. Wang, Engineering Structures 3 (1981) 249–255.

    Article  Google Scholar 

  12. W.H. Chen and C.W. Wu, Engineering Fracture Mechanics 15 (1981) 155–168.

    Article  Google Scholar 

  13. W.H. Chen and K.T. Chen, International Journal of Fracture 17 (1981) R99–103.

    Google Scholar 

  14. W.H. Chen and Y.H. Huang, Journal of the Chinese Society of Mechanical Engineers 1 (1980) 21–32.

    Google Scholar 

  15. W.H. Chen and T.C. Lin, Engineering Fracture Mechanics 18 (1983) 133–143.

    Article  Google Scholar 

  16. M.L. Williams, Journal of Applied Mechanics 28 (1961) 78–82.

    Google Scholar 

  17. R. Roberts and T. Rich, Journal of Applied Mechanics 34 (1967) 777–779.

    Google Scholar 

  18. L.M. Keer and C. Sve, International Journal of Solids and Structures 6 (1970) 1545–1559.

    Article  Google Scholar 

  19. B. Stahl and L.M. Keer, International Journal of Solids and Structures 8 (1972) 69–91.

    Article  Google Scholar 

  20. H.C. Rhee, Ph.D. Thesis, Georgia Institute of Technology (1976).

  21. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edn., McGraw-Hill (1959).

  22. K.H. Huebner, The Finite Element Method for Engineers, 1st edn., Wiley-Sons (1975).

  23. B.M. Irons and K.J. Draper, A.I.A.A. Journal 3 (1965) 961.

    Google Scholar 

  24. F.K. Bogner, R.L. Fox and L.A. Schmit, in Proceedings Conference Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base, Ohio (1965) 397–443.

    Google Scholar 

  25. S. Gopalacharyulu, International Journal for Numerical Methods in Engineering 6 (1973) 305–309.

    Google Scholar 

  26. K. Bathe and E.L. Wilson, Numerical Methods in Finite Element Analysis, 1st edn., Prentice-Hall (1976).

  27. L. Meirovitch, Analytical Methods in Vibrations, 1st edn., Collier-Macmillan (1967).

  28. M.D. Waller, Proceedings of the Physical Society of London 51 (1939) 831–844.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W.H., Chen, P.Y. A hybrid-displacement finite element model for the bending analysis of thin cracked plates. Int J Fract 24, 83–106 (1984). https://doi.org/10.1007/BF00028054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028054

Keywords

Navigation