Skip to main content
Log in

Energy release rate along a three-dimensional crack front in a thermally stressed body

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Based on a line-integral expression for the energy release rate in terms of crack tip fields, which is valid for general material response, a (area/volume) domain integral expression for the energetic force in a thermally stressed body is derived. The general three-dimensional finite domain integral expression and the two-dimensional and axisymmetric specializations for the energy release rate are given. The domain expression is naturally compatible with the finite element formulation of the field equations. As such it is ideally suited for efficient and accurate calculation of the pointwise values of the energy release rate along a three-dimensional crack front. The finite element implementation of the domain integral corresponds to the virtual crack extension technique. Procedures for calculating the energy release rate using the numerically determined field solutions are discussed. For illustrative purposes several numerical examples are presented.

Résumé

En sa basant sur une intégrale simple exprimant le taux de relaxation d'énergie afférant aux champs de contrainte à l'extrémité d'une fissure, expression applicable à la réponse d'un matériau quelconque, on a déduit une intégrale de domaine (superficielle ou volumique) décrivant l'énergie dans un corps soumis à contraintes thermiques.

On fournit l'intégrale générale relative à un domaine fini tridimensionnel et á des cas particuliers bidimensionnels et axisymétriques, exprimant le taux de relaxation d'énergie. L'intégrale de domaine est naturellement compatible avec une formulation par éléments finis des équations de champ. Comme telle, elle convient idéalement pour un calcul facile et précis des valeurs ponctuelles du taux de relaxation de l'énergie le long du front d'une fissure tridimensionnelle. L'implantation d'éléments finis dans l'intégrale de domaine correspond à une technique d'extension virtuelle de la fissure. On discute des procédures de calculs du taux de relaxation de l'énergie, qui utilisent les solutions relatives au champ déterminées par voie numérique. A titre d'illustration, on présente plusieurs exemples numériques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Hutchinson, Journal of Applied Mechanics 50 (1983) 1042–1051

    Google Scholar 

  2. J.R. Rice, R.M. McMeeking, D.M. Parks and E.P. Sorensen, Computer Methods in Applied Mechanics and Engineering 17/18 (1979) 411–442

    Article  Google Scholar 

  3. D.M. Parks, International Journal of Fracture 10 (1974) RCR 487–502

    Google Scholar 

  4. D.M. Parks, Computer Methods in Applied Mechanics and Engineering 12 (1977) 353–364

    Article  Google Scholar 

  5. T.K. Hellen, International Journal of Numerical Methods in Engineering 9 (1975) 187–207

    Google Scholar 

  6. H.G. de Lorenzi, International Journal of Fracture 19 (1982) 183–193

    Article  Google Scholar 

  7. F.Z. Li, C.F. Shih and A. Needleman, Engineering Fracture Mechanics 21 (1985) 405–421

    Article  Google Scholar 

  8. C. Atkinson and J.D. Eshelby, International Journal of Fracture Mechanics 4 (1968) 3–8

    Article  Google Scholar 

  9. B.V. Kostrov and L.V. Nikitin, Archiwum Mechaniki Stosowanej 22 (1970) 749–775

    Google Scholar 

  10. L.B. Freund, Journal of Elasticity 2 (1972) 341–349

    Google Scholar 

  11. T. Nakamura, C.F. Shih and L.B. Freund, International Journal of Fracture 27 (1985) 229–243

    Google Scholar 

  12. O.S. Nguyen, in Three-Dimensional Constitutive Relations and Ductile Fracture, edited by S. Nemat-Nasser, North-Holland Publishing Co., Amsterdam (1981) 315–330

    Google Scholar 

  13. J.R. Rice, in Fracture: An Advanced Treatise, edited by H. Liebowitz, Vol. 2, Academic Press (1968) 191–311

  14. J.D. Eshelby, in Inelastic Behavior of Solids, edited by M.F. Kanninen, McGraw-Hill, New York (1970) 77–114

    Google Scholar 

  15. B. Budiansky and J.R. Rice, Journal of Applied Mechanics 40 (1973) 201–203

    Google Scholar 

  16. W.K. Wilson and I.-W. Yu, International Journal of Fracture 15 (1979) 377–387

    Google Scholar 

  17. S. Aoki, K. Kishimoto and M. Sakata, Engineering Fracture Mechanics 16 (1982) 405–413

    Article  Google Scholar 

  18. H.G. deLorenzi, “Energy Release Rate Calculations by the Finite Element Method,” General Electric Company TIS Report 82 CRD205 (1982)

  19. R.S. Barsoum, International Journal for Numerical Methods in Engineering 11 (1977) 85–98

    Google Scholar 

  20. M.A. Hussain, C.F. Shih, and M.D. German, “Lagrangian Elements as Singularity Elements in Crack Analysis,” General Electric Company, Technical Information Series Report No. 80CRD291 (December 1980)

  21. D.S. Malkus and T.J.R. Hughes, Computer Methods in Applied Mechanics and Engineering 15 (1978) 63–81

    Article  Google Scholar 

  22. C.F. Shih and A. Needleman, Journal of Applied Mechanics 51 (1984) 48–56

    Google Scholar 

  23. O.C. Zienkiewicz, The Finite Element Method, McGraw-Hill, London, England (1977)

    Google Scholar 

  24. C.F. Shih, H.G. deLorenzi and W.R. Andrews, in Elastic-Plastic Fracture, ASTM STP 668, edited by J.D. Landes et al., American Society for Testing and Materials (1979) 65–120

  25. B.R. Bass, R.H. Bryan, J.W. Bryson and J.G. Merkle, Journal of Pressure Vessel Technology 104 (1982) 308–316.

    Google Scholar 

  26. B.R. Bass and J.W. Bryson, International Journal of Fracture 22 (1983) R3-R7.

    Google Scholar 

  27. H.G. deLorenzi and C.F. Shih, International Journal of Fracture 21 (1983) 195–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, C.F., Moran, B. & Nakamura, T. Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30, 79–102 (1986). https://doi.org/10.1007/BF00034019

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034019

Keywords

Navigation