Skip to main content
Log in

Nonlinear effects in mixed-mode interfacial delaminations

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The initiation of coplanar, interfacial cracks is considered with a view to examining mixed-mode fracture parameters and criteria. The point-loaded blister configuration provided a simple axisymmetric geometry and table crack growth between glass and an epoxy. Crack opening displacements normal to the interface were measured with submicron resolution using crack opening interferometry. The measurements were made within 2.7 μm from the crack front over a field of view of 500 μm, thus allowing the extent of inelastic behavior to be evaluated. A complementary finite element analysis was used to determine tangential crack opening displacements and other linear elastic mixed-mode fracture parameters, all of which were found to increase with relative increases in mode II component. The results were attributed to related increases in the extent of material nonlinear behavior in the crack front region. The normal crack opening displacement fields in the plastic zone exhibited a power law dependence on radial distance from the crack front. Critical values of normal crack opening displacements evaluated at a distance of 12.7 μm from the crack front were not constant under the range of mixed-mode conditions examined, indicating that any fracture criterion is likely to be a function of the mode-mix for the particular material combination considered here.

Résumé

On considère l'amorçage de fissures coplanaires et d'interfaces en vue d'un examen des critères et des paramétres de rupture selon un mode mixte. La configuration en cupules soumises à charge ponctuelle fournit une géométrie axysymétrique simple et des conditions de croissance stable d'une fissure entre du verre et un epoxy. En utilisant une technique d'interférométrie à l'endroit d'ouverture de la fissure, on mesure les COD selon la normale a l'interface avec une résolution submicronique. Les mesures ont été effectuées sur 12,7 microns depuis le front de la fissure, sur un champ d'expérience de quelque 500 microns, ce qui permet d'évaluer l'étendue du comportement inélastique. On utilise une analyse complémentaire par éléments finis pour déterminer les COD tangentiels, ainsi que d'autres paramètres de rupture selon une mode linéaire élastique mixte; tous ces paramètres sont identifiés comme croissant avec une augmentation relative de la composante de mode II. Les résultats sont appliqués aux accroissements associés constatés dans l'étendue du comportement non linéaire du matériau dans la zone du front de fissure. Les champs normaux de COD dans la zone plastique suivent une loi parabolique en fonction de la distance qui les sépare radialement du front de fissure. Les valeurs critiques du COD selon la normale, évalués à une distance de 12,7 microns à partir du front de fissure ne sont pas constantes sur une certaine gamme de conditions en mode mixte examinées, ce qui indique que tout critère de rupture est sans doute fonction de la combinaison des modes, pour la combinaison particulière de matériaux envisagée dans le présent travail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.S. Johnson and P.D. Mangalgiri, “Influence of the Resin on Interlaminar Mixed-Mode Fracture,” NASA TM 87571 (1985) to appear in Toughened Composites, ASTM STP XXX (1987).

  2. M.L. Williams, Bulletin of the Seismological Society of America 49 (1959) 199–204.

    Google Scholar 

  3. H. Dannenberg, Journal of Applied Polymer Science 5 (1961) 125–134.

    Google Scholar 

  4. A. Piva and E. Viola, Engineering Fracture Mechanics 13 (1980) 143–174.

    Google Scholar 

  5. K.M. Liechti, Experimental Mechanics 25 (1985) 255–261.

    Google Scholar 

  6. J.F. Yau and S.S. Wang, Engineering Fracture Mechanics 20 (1984) 423–432.

    Google Scholar 

  7. S.S. Wang and J.F. Yau, International Journal of Fracture 19 (1982) 295–309.

    Google Scholar 

  8. G.B. Sinclair, International Journal of Fracture 16 (1980) 111–119.

    Google Scholar 

  9. C. Atkinson, International Journal of Fracture 19 (1982) 131–138.

    Google Scholar 

  10. T.N. Farris and L.M. Keer, International Journal of Fracture 27 (1985) 91–103.

    Google Scholar 

  11. E. Wu and R.L. Thomas, Proceedings 5th International Congress of Rheology University Park Press, Baltimore, 1 (1969) 575–587.

    Google Scholar 

  12. T.T. Wang, T.K. Kwei and H.M. Zupko, International Journal of Fracture Mechanics 6 (1970) 127–137.

    Google Scholar 

  13. G.P. Anderson, K.L. DeVries and M.L. Williams, International Journal of Fracture 10 (1974) 565–583.

    Google Scholar 

  14. G.P. Anderson, K.L. DeVries and M.L. Williams, Journal of Colloid and Interface Science 47 (1974) 600–609.

    Google Scholar 

  15. N. Takashi, K. Yamazaki, T. Natsume and T. Takebe in 21st Japan Congress on Materials Research-Non-Metallic Metallic Materials (1978) 260–264.

  16. M. Yamazaki and M. Takashi, in 21st Japan Congress on Materials Research-Non-Metallic Materials (1973) 255–259.

  17. D.R. Mulville, P.W. Mast and R.N. Vaishnav, Engineering Fracture Mechanics (1976) 555–565.

  18. D.R. Mulville and R.N. Vaishnav, Adhesion 7 (1975) 215–233.

    Google Scholar 

  19. D.R. Mulville, D.L. Hunston and P.W. Mast, Journal of Engineering Materials and Technology 100 (1978) 25–31.

    Google Scholar 

  20. E. Sommer, Engineering Fracture Mechanics 1 (1970) 705–718.

    Google Scholar 

  21. K.M. Liechti and W.G. Knauss, Experimental Mechanics 22 (1982) 262–269.

    Google Scholar 

  22. K.M. Liechti and W.G. Knauss, Experimental Mechanics 22 (1982) 383–391.

    Google Scholar 

  23. K.M. Liechti, D. Ginsburg and E.C. Hanson, Journal of Adhesion 23 (1987) 123–146.

    Google Scholar 

  24. K. Arin and F. Erdogan, International Journal of Engineering Science 9 (1971) 213–232.

    Google Scholar 

  25. R.E. Smelser, International Journal of Fracture 15 (1979) 135–143.

    Google Scholar 

  26. J.D. Achenbach, L.M. Keer, R.P. Kheetan and S.H. Chen, Journal of Elasticity 9 (1979) 397–424.

    Google Scholar 

  27. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.

    Google Scholar 

  28. J.R. Rice and G.F. Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liechti, K.M., Hanson, E.C. Nonlinear effects in mixed-mode interfacial delaminations. Int J Fract 36, 199–217 (1988). https://doi.org/10.1007/BF00035100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035100

Keywords

Navigation