Skip to main content
Log in

Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta, A. C., 1962. The transfer of stem rust resistance from rye to wheat. Diss. Abstr. 23: 34–35.

    Google Scholar 

  • Allard, R. W. & R. G. Shands., 1954. Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevi. Phytopathology 44: 266–274.

    Google Scholar 

  • Athwal, R. S. & G. Kimber, 1972. The pairing of an alien chromosome with homoeologous chromosomes of wheat. Can. J. Genet. Cytol. 14: 325–333.

    Google Scholar 

  • Autrique, E., R. P. Singh, S. D. Tanksley & M. E. Sorrells, 1995. Molecular markers for for leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38: 75–83.

    Google Scholar 

  • Banks, P. M., P. J. Larkin, H. S. Bariana, E. S. Lagudah, R. Appels, P. M. Waterhouse, R. I. S. Brettel, X. Chen, H. L. Xu, Z. Y. Xin, Y. T. Qian, X. M. Zhou, Z. M. Cheng & G. H. Zhou, 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance for Thinopyrum intermedium to wheat. Genome 38: 395–405.

    Google Scholar 

  • Bariana, H. S. & R. A. McIntosh, 1993. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and its genetic linkage with other disease resistance genes in chromosome 2A. Genome 36: 476–482.

    Google Scholar 

  • Bariana, H. S. & R. A. McIntosh, 1994. Characterization and origin of rust resistance and powdery mildew resistance genes in VPM1. Euphytica 76: 53–61.

    Google Scholar 

  • Bartos, P. & I. Bares, 1971. Leaf and stem rust resistance of hexaploid wheat cultivars ‘Salzmünder Bartweizen’ and ‘Weique’. Euphytica 20: 435–440.

    Google Scholar 

  • Bartos, P., J. Valkoun, J. Kosner & V. Slovencikova, 1973. Rust resistance of some Europaen wheat cultivars derived from rye. p. 145–146. In: E. R. Sears & L. M. S. Sears (Eds). Proc. 4th Int. Wheat. Genet. Symp. Univ. of Missouri, Columbia, USA.

  • Baum, M., E. S. Laguda & R. Appels, 1992. Wide crosses in cereals. Ann. Rev. Pl. Physiol. Mol. Biol. 43: 117–143.

    Google Scholar 

  • Bonhomme, A., M. D. Gale, R. M. D. Koebner, P. Nicolas, J. Jahier & M. Bernard, 1995. RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor. Appl. Genet. 90; 1042–1048.

    Google Scholar 

  • Brettel, R. I. S., P. M. Banks, Y. Cauderon, X. Chen, Z. M. Cheng, P. J. Larkin & P. M. Waterhouse, 1988. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann. Appl. Biol. 113: 599–603.

    Google Scholar 

  • Cauderon, Y., 1966. Etude cytogénétique del'évolution du matériel issu de croisement entre Triticum aestivum et Agropyron intermedium. Ann. de l'Amél. Plantes 16: 43–70.

    Google Scholar 

  • Cauderon, Y., B. Saigne & M. Dauge, 1973. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. p. 401–407. In: E. R. Sears & L. M. S. Sears (Eds.). Proc. 4th Int. Wheat Genet. Symp. Columbia, Missouri, USA.

  • Ceoloni, C., G. Del Signore, M. Pasquini & A. Testa, 1988. Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homoeologous recombination. p. 221–226. In: T. E. Miller & R. M. D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp. Cambridge, UK.

  • Ceoloni, C., G.Del Signore, L. Ercoli & P. Donini, 1992. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas 116: 239–245.

    Google Scholar 

  • Ceoloni, C., M. Biagetti, M. Ciaffi, P. Forte & M. Pasquiri, 1996. Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum. Euphytica 89: 87–97.

    Google Scholar 

  • Chen, P. D., L. L. Qi, B. Zhou & S. Z. Zhang. 1995. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 91: 1125–1128.

    Google Scholar 

  • Delaney, D. E., B.R. Friebe, J. H. Hatchett, B. S. Gill & S. H. Hulbert, 1995. Targeted mapping of rye chromatin in wheat by representational difference analysis. Genome 38: 458–466.

    Google Scholar 

  • Devos, K. M., M. D. Atkinson, C. N. Chinoy, H. A. Francis, R. L. Harcourt, R. M. D. Koebner, C. J. Liu, P. Masojc, D. X. Xie & M. D. Gale, 1993. Chromosome rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85: 673–689.

    Google Scholar 

  • Devos, K. M., J. Dubcovsky, J. Dvorak, C. N. Chinoy & M. D. Gale, 1995. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 91: 282–288.

    Google Scholar 

  • Donini, P., R. M. D. Koebner & C. Ceoloni, 1995. Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor. Appl. Genet. 91: 738–743.

    Google Scholar 

  • Doussinault, G., A. Delibes, R. Sanchez-Monge & F. Garcia-Olmedo, 1983. Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303: 698–700.

    Google Scholar 

  • Driscoll, C. J., 1968. Alien transfer by irradiation and meiotic control. p. 196–203. In: K. W. Findley & K. W. Findley (Eds.), Proc. 3rd Int. Wheat Genet. Symp., Aust. Acad. Science, Canberra, Australia.

  • Driscoll, C. J. & L. M. Anderson, 1967. Cytogenetic studies of Transec-a wheat-rye translocation line. Can. J. Genet. Cytol. 9: 375–380.

    Google Scholar 

  • Driscoll, C. J. & L. M. Bielig, 1968. Mapping of the Transec wheat rye translocation. Can. J. Genet. Cytol. 10: 421–425.

    Google Scholar 

  • Driscoll, C. J. & N. F. Jensen, 1963. A genetic method for detecting induced intergeneric translocations. Genetics 48: 459–468.

    Google Scholar 

  • Driscoll, C. J. & N. F. Jensen, 1964. Characteristics of leaf rust resistance transferred from rye to wheat. Crop Sci. 4: 372–374.

    Google Scholar 

  • Driscoll, C. J. & N. F. Jensen, 1965. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances. Crop Sci. 5: 279–280.

    Google Scholar 

  • Driscoll, C. J. & E. R. Sears, 1965. Mapping of a wheat-rye translocation. Genetics 51: 439–443.

    Google Scholar 

  • Dvorak, J., 1977. Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can. J. Genet. Cytol. 19: 133–141.

    Google Scholar 

  • Dvorak, J., 1983. The origin of wheat chromosomes 4A and 4B and their genome reallocation. Can. J. Genet. Cytol. 25: 210–214.

    Google Scholar 

  • Dvorak, J. & D. R. Knott, 1977. Homoeologous chromatin exchange in radiation-induced gene transfer. Can. J. Genet. Cytol. 19: 125–131.

    Google Scholar 

  • Dvorak, J. & D. R. Knott, 1980. Chromosome location of two leaf nist resistance genes transferred from T. speltoides to T. aestivum. Can J. Genet. Cytol. 22: 281–289.

    Google Scholar 

  • Dvorak, J. & D. R. Knott, 1990. Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33: 892–897.

    Google Scholar 

  • Dyck, P. L. & B. Friebe, 1993. Evaluation of leaf rust resistance from wheat chromosomal translocation lines. Crop Sci. 33: 687–690.

    Google Scholar 

  • Dyck, P. L., 1992. Transfer of a gene for stem rust resistance from Triticum araraticum to hexaploid wheat. Genome 35: 788–792.

    Google Scholar 

  • Endo, T. R., M. Yamamoto & Y. Mukai, 1994. Structural changes of rye chromosome 1R induced by a gametocidal chromosome. J. Genet. 69: 13–19.

    Google Scholar 

  • Friebe, B., F. J. Zeller & R. Kunzmann, 1987. Transfer of the 1BL/1RS wheat-rye translocation from hexaploid bread wheat to tetraploid durum wheat. Theor. Appl. Genet. 74: 423–425.

    Google Scholar 

  • Friebe, B. & E. N. Larter, 1988. Identification of a complete set of isogenic wheat-rye D-genome substitution lines by means of Giemsa C-banding. Theor. Appl. Genet. 76: 473–479.

    Google Scholar 

  • Friebe, B., M. Heun, & W. Bushuk, 1989. Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor. Appl. Genet. 78: 425–432.

    Google Scholar 

  • Friebe, B., J. H. Hatchett, R. G. Sears & B. S. Gill, 1990. Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet. 79: 385–389.

    Google Scholar 

  • Friebe, B., Y. Mukai, H. S. Dhaliwal, T. J. Martin & B. S. Gill, 1991a. Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor. Appl. Genet. 81: 381–389.

    Google Scholar 

  • Friebe, B., J. H. Hatchett, Y. Mukai, B. S. Gill & E. E. Sebesta, 1991b. X-ray induced transfer of Hessian fly resistance from ‘Balbo’ rye to hexaploid wheat analyzed by the C-banding technique. p. 189–194. In: G. Kimber (Ed). Proc. 2nd Int. Symp. Chromosome Eng. in Plants, Columbia, Missouri, USA.

  • Friebe, B., J. H. Hatchett, B. S. Gill, Y. Mukai & E. E. Sebesta, 1991c. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet. 83: 33–40.

    Google Scholar 

  • Friebe, B., Y. Mukai, B. S. Gill & Y. Cauderon, 1992a. C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor. Appl. Genet. 84: 899–905.

    Google Scholar 

  • Friebe, B., F. J. Zeller, Y. Mukai, B. P. Forster, P. Bartos & R. A. McIntosh, 1992b. Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor. Appl. Genet. 83: 775–782.

    Google Scholar 

  • Friebe, B., J. Jiang, B. S. Gill & P. L. Dyck, 1993a. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet. 86: 141–149.

    Google Scholar 

  • Friebe, B., B. S. Gill, T. S. Cox & F. J. Zeller, 1993b. Registration of KS91WGRC14 stem rust and powdery mildew resistant T1BL·1RS durum wheat germplasm. Crop Sci 33: 220.

    Google Scholar 

  • Friebe, B. & B. S. Gill, 1994. C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica 78: 1–5.

    Google Scholar 

  • Friebe, B., M. Heun, N. Tuleen, F. J. Zeller & B. S. Gill, 1994a. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 34: 621–625.

    Google Scholar 

  • Friebe, B., J. Jiang, D. R. Knott & B. S. Gill, 1994b. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 34: 400–404.

    Google Scholar 

  • Friebe, B., J. Jiang, N. Tuleen & B. S. Gill, 1995a. Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 90: 150–156.

    Google Scholar 

  • Friebe, B., W. Zhang, D. R. Porter & B. S. Gill, 1995b. Nonhomoeologous wheat-rye translocations conferring resistance to greenbug. Euphytica 84: 121–125.

    Google Scholar 

  • Friebe, B., J. Jiang, W. R. Raupp & B. S. Gill, 1995c. Molecular cytogenetic analysis of radiation-induced alien genetic transfers in wheat. p. 519–529. In: Z. S. Li & Z. Y. Xin (Eds). Proc. 8th Int. Wheat Genet. Symp., Beijing, China.

  • Friebe, B., B. S. Gill, N. A. Tuleen & T. S. Cox, 1995d. Registration of KS93WGRC28 powdery mildew resistant T6BS·6RL wheat germplasm. Crop Sci. 35: 1237.

    Google Scholar 

  • Gale, M. D. & T. E. Miller, 1987. The introduction of alien genetic variation into wheat. p. 173–210. In: F. G. H. Lupton (Ed). Wheat Breeding: Its scientific basis., Chapman and Hall, UK

    Google Scholar 

  • Gill, B. S., B. Friebe & T. R. Endo, 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830–839.

    Google Scholar 

  • Gyarfas, J., 1968. Transference of disease resistance from Triticum timopheevii to Triticum aestivum. MSc. Thesis, University of Sydney, Australia.

  • Gill, B. S., B. Friebe, D. L. Wilson & T. S. Cox, 1995. Registration of KS93WGRC27 wheat streak mosaic virus-resistant T4DL·4Ai#2S wheat germplasm. Crop Sci. 35: 1236–1237.

    Google Scholar 

  • Gill, B. S., K. S. Gill & B. Friebe. 1996. Expanding genetic maps: reevaluation of the relationship between chiasmata and crossovers. Chromosomes Today, in press.

  • Heun, M. & B. Friebe, 1990. Introgression of powdery mildew resistance from rye into wheat. Phytopathology 80: 242–245.

    Google Scholar 

  • Heun, M., B. Friebe & W. Bushuk, 1990. Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80: 1129–1133.

    Google Scholar 

  • Hohmann, U., E. D. Badaeva, W. Busch, B. Friebe & B. S. Gill. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Theor. Appl. Genet., in press.

  • Hollenhorst, M. M. & L. R. Joppa, 1981. Chromosomal location of genes for resistance to greenbug in Largo and Amigo wheats. Agron. Abstr. p. 63.

  • Hollenhorst, M. M. & L. R. Joppa, 1983. Chromosomal location of genes for resistance to greenbug in ‘Largo’ and ‘Amigo’ wheats. Crop Sci. 23: 91–93.

    Google Scholar 

  • Hsam, S. L., M.-C. Cermeño, B. Friebe & F. J. Zeller, 1995. Transfer of Amigo wheat powdery mildew resistance gene Pm17 from T1AL·1RS to the T1BL·1RS wheat-rye translocation chromosome. Heredity 74: 497–501.

    Google Scholar 

  • Huerta-Espino, J. & R. P. Singh, 1994. First report of virulence for wheat leaf rust gene Lr19 in Mexico. Plant Disease 78: 640.

    Google Scholar 

  • Islam, A. K. M. R. & K. W. Shepherd, 1992. Alien genetic variation in wheat improvement. p. 291–312. In: P. K. Gupta & T. Tsuchia (Eds)., Chromosome engineering in plants: Genetics, Breeding, Evolution, Part A, Elsevier Sci. Publ., Amsterdam, The Netherlands.

    Google Scholar 

  • Jahier, J., G. Doussinault, F. Dosba & E. Bourgeois, 1979. Monosomic analysis of resistance to eyespot in the varietyy ‘Roazon’. p. 437–440. In: S. Ramanujam (Ed). Proc. 5th Int. Wheat Genet. Symp., New Delhi, India.

  • Jahier, J., A. M. Tanguy & G. Doussinault, 1989. Analysis of the level of eyespot resistance due to genes transferred to wheat from Aegilops ventricosa. Euphytica 44: 55–59.

    Google Scholar 

  • Jiang, J., B. Friebe, H. S. Dhaliwal, T. J. Martin & B. S. Gill, 1993. Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet. 86: 41–48.

    Google Scholar 

  • Jiang, J., B. Friebe & B. S. Gill, 1994a. Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.

    Google Scholar 

  • Jiang, J., B. Friebe & B. S. Gill, 1994b. Chromosome painting of Amigo wheat. Theor. Appl. Genet. 89: 811–813.

    Google Scholar 

  • Jorgensen, J. H. & C. J. Jensen, 1973. Gene Pm6 fore resistance to powdery mildew in wheat. Euphytica 22: 4–23.

    Google Scholar 

  • Kattermann, G., 1937. Zur Zytologie halmbehaarter Stämme aus Weizenroggenbastardierung. Der Züchter 9: 196–199.

    Google Scholar 

  • Kattermann, G., 1938. Über konstante halmbehaarte Stämme aus Weizenroggenbastardierung mit 2n=42 Chromosomen. Z. Induk. Abst.- und Vererbungsl. 74: 354–375.

    Google Scholar 

  • Kerber, E. R. & P. L. Dyck, 1990. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome 33: 530–537.

    Google Scholar 

  • Kibirige-Sebunya, I. & D. R. Knott, 1983. Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can. J. Genet. Cytol. 25: 215–221.

    Google Scholar 

  • Kim, N.-S., E. D. P. Whelan, G. Fedak & K. Armstrong, 1992. Identification of a Triticum-Lophopyrum noncompensating translocation line and detection of Lophopyrum DNA using wheatgrass specific molecular marker. Genome 35: 541–544.

    Google Scholar 

  • Kim, N.-S., K. Armstrong & D. R. Knott, 1993. Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in the physical mapping of chromosome 7D. Theor. Appl. Genet. 85: 561–567.

    Google Scholar 

  • Knott, D. R., 1961. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Plant Sci. 41: 109–123.

    Google Scholar 

  • Knott, D. R., 1968. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can. J. Genet. Cytol. 10: 695–696.

    Google Scholar 

  • Knott, D. R., 1980. Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can. J. Genet. Cytol. 22: 651–654.

    Google Scholar 

  • Knott, D. R., 1984. The genetic nature of mutations of a gene for yellow pigment linked to Lr19 in ‘Agatha’ wheat. Can. J. Genet. Cytol. 26: 392–393.

    Google Scholar 

  • Knott, D. R., 1987. Transferring alien genes to wheat. p. 462–471. In: E. G. Heyne (Ed)., Wheat and wheat improvement, 2nd edn., Monogr. 13, Am. Soc. Agron.

  • Knott, D. R., 1989. The effect of transfers of alien genes for leaf rust resistance on the agronomic and quality characteristics of wheat. Euphytica 44: 65–72.

    Google Scholar 

  • Knott, D. R., J. Dvorak & J. S. Nanda, 1977. The transfer to wheat and homology of an Agropyron elongatum chromosome carrying a resistance gene to stem rust. Can. J. Genet. Cytol. 19: 75–79.

    Google Scholar 

  • Koebner, R. M. D. & K. W. Shepherd, 1986. Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis. 1. Isolation of recombinants. Theor. Appl. Genet. 73: 197–208.

    Google Scholar 

  • Koebner, R. M. D., K. W. Shepherd & R. Appels, 1986. Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis. 2. Characterization of recombinants. Theor. Appl. Genet. 73: 209–217.

    Google Scholar 

  • Koebner, R. M. D., T. E. Miller, J. W. Snape & C. N. Law, 1988. Wheat endopeptidase: genetic control, polymorphism, intrachromosomal gene location and alien variation. Genome 30: 186–192.

    Google Scholar 

  • Kota, R. S., 1980. A cytogenetic and agronomic study of induced translocation lines of common wheat (Triticum aestivum L. em Thell) immune from wheat streak mosaic virus. MSc thesis. South Dakota State University, S. D., USA.

  • Lapitan, N. L. V., R. G. Sears & B. S. Gill, 1984. Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor. Appl. Genet. 68: 547–554.

    Google Scholar 

  • Lapitan, N. L. V., R. G. Sears, A. L. Raybum & B. S. Gill, 1986. Wheat-rye translocations. J. Hered. 77: 415–419.

    Google Scholar 

  • Larson, R. I. & Atkinson, 1970. Identity of the wheat chromosome replaced by Agropyron chromosomes in a triple alien chromosome substitution line immune to wheat streak mosaic. Can J. Genet. Cytol. 12: 145–150.

    Google Scholar 

  • Larson, R. I. & T. G. Atkinson, 1972. Isolation of an Agropyron elongatum chromosome conferring resistance to the wheat curl mite on a Triticum-Agropyron hybrid. Can. J. Genet. Cytol. 14: 731–732.

    Google Scholar 

  • Larson, R. I. & Atkinson, 1973. Wheat-Agropyron chromosome substitution lines as sources to wheat streak mosaic virus and its vector, Aceria tulipae. p. 173–184. In: E. R. Sears & L. M. S. Sears (Eds). Proc. 4th Int. Wheat. Genet. Symp. Univ. of Missouri, Columbia, USA.

  • Law, C. N., A. J. Worland, T. W. Hollins, R. M. D. Koebner & P. R. Scott, 1988. The genetics of two sources of resistance to eyespot (Pseudocercosporella herpotrichoides) in wheat. p. 835–840. In: T. E. Miller & R. M. D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp. Cambridge, UK.

  • Lay, C. L., D. G. Wells, W. A. S. Gardner, 1971. Immunity from wheat streak mosaic virus in irradiated Agrotricum progenies. Crop Sci. 1: 431–432.

    Google Scholar 

  • Le, H. T., K. C. Armstrong & B. Miki, 1989. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol. Biol. Rep. 7: 150–158.

    Google Scholar 

  • Liang, G. H., R. C. Wang, C. L. Niblett & E. G. Heyne, 1979. Registration of B-6–37–1 wheat germ plasm. Crop Sci. 18: 421.

    Google Scholar 

  • Liu, C. J., M. D. Atkinson, C. M. N. Chinoy, K. M. Devos & M. D. Gale, 1992. Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor. Appl. Genet. 83: 305–312.

    Google Scholar 

  • Lowry, J. R., D. J. Sammons, P. S. Baenziger & J. G. Moseman, 1984. Identification and characterization of the gene conditioning powdery mildew resistance in ‘Amigo’ wheat. Crop Sci. 24: 129–132.

    Google Scholar 

  • Lukaszewski, A. J., 1990. Frequency of 1RS·1AL and 1RS·1BL translocations in United States wheats. Crop Sci. 30: 1151–1153.

    Google Scholar 

  • Lukaszweski, A. J., 1992. A comparison of physical distribution of recombination in chromosome 1R of diploid rye and in hexaploid triticale. Theor. Appl. Genet. 83: 1048–1053.

    Google Scholar 

  • Lukaszewski, A. J. & C. A. Curtis, 1992. Physical distribution of recombination in the B-genome chromosomes of tetraploid wheat. Theor. Appl. Genet. 86: 121–127.

    Google Scholar 

  • Lukaszewski, A. J., 1993. Reconstruction in wheat of complete chromosomes 1B and 1R from the 1RS·1BL translocation of Kavkaz origin. Genome 36: 821–824.

    Google Scholar 

  • Marais, G. F., 1990. Preferential transmission in bread wheat of a chromosome segment derived from Thinopyrum distichum (Thumb.) Löve. Plant Breeding 104: 152–159.

    Google Scholar 

  • Marais, G. F., 1992a. Gamma irradiation induced deletions in an alien chromosome segment of the wheat ‘Indis’ and their use in gene mapping. Genome 35: 225–229.

    Google Scholar 

  • Marais, G. F., 1992b. The modification of a common wheat-Thinopyrum distichum translocated chromosome with a locus homoeoallelic to Lr19. Theor. Appl. Genet. 85: 73–78.

    Google Scholar 

  • Marais, G. F., M. Horn & F.Du Toit, 1994. Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breeding 113: 265–271.

    Google Scholar 

  • Marais, G. F. & A. S. Marais, 1990. The assignment of a Thinopyrum distichum (Thumb.) Löve-derived translocation to the long arm of wheat chromosome 7D using endopeptidase polymorphisms. Theor. Appl. Genet. 779: 182–186.

    Google Scholar 

  • Marais, G. F. & A. S. Marais, 1994. The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica 79: 75–80.

    Google Scholar 

  • Marais, G. F., H. S. Roux, Z. A. Pretorius & R. De V. Pienaar, 1988. Resistance to leaf rust of wheat derived from Thinopyrum distichum (Thumb. Löwe). p. 369–337. In: T. E. Miller & R. M. D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp. Cambridge, UK.

  • Martin, T. J., T. L. Harvey & R. W. Livers, 1976. Resistance to wheat streak mosaic virus and its vector, Aceria tulipae. Phytopathology 66: 346–349.

    Google Scholar 

  • Martin, R., 1991. Untersuchungen zur Charakterisierung und Identifizierung von Aegilops ventricosa Chromosomen und deren Nutzung in der Weizenzüchtung. PhD Thesis, Technical University of Munich, Germany, pp. 146.

  • McIntosh, R. A., 1983. Genetic and cytogenetic studies involving Lr18 resistance to Puccinia recondita. p. 777–783. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.

  • McIntosh, R. A., 1991. Alien sources of disease resistance in bread wheats. p. 320–332. In: T. Sasakuma & T. Kinoshita (Eds). Proc. of Dr. H. Kihara Memorial Int. Symp. on Cytoplasmic Engineering in Wheat. Nuclear and organellar genomes of wheat species. Yokohama, Japan.

  • McIntosh, R. A. & J. Gyarfas, 1971. Triticum timopheevii as a source of resistance to wheat stem rust. Z. Pflanzenzüchtg. 66: 240–248.

    Google Scholar 

  • McIntosh, R. A. & N. H. Luig, 1973. Recombination between genes for reaction to P. graminis at or near the Sr9 locus. p. 425–432. In: E. R. Sears & L. M. S. Sears (Eds). Proc. 4th Int. Wheat. Genet. Symp. Univ. of Missouri, Columbia, USA.

  • McIntosh, R. A., E. P. Baker & C. J. Driscoll, 1965. Cytogenetic studies in wheat I. Monosomic analysis of leaf rust resistance in cultivars Uruguay and Transfer. Aust. J. Biol. Sci. 18: 971–977.

    Google Scholar 

  • McIntosh, R. A., P. L. Dyck & G. J. Green, 1977. Inheritance of leaf rust and stem rust resistance in wheat cultivars Agent and Agatha. Aust. J. Agric. Res. 28: 37–45.

    Google Scholar 

  • McIntosh, R. A., T. E. Miller & V. Chapman, 1982. Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z. Pflanzenzüchtg. 89: 295–306.

    Google Scholar 

  • McIntosh, R. A., B. Friebe, J. Jiang, D. The & B. S. Gill, 1995a. Cytogenetical studies in wheat XVI. Chromosome location of a gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica 82: 141–147.

    Google Scholar 

  • McIntosh, R. A., C. R. Wellings & R. F. Park, 1995b. Wheat rusts: an atlas of resistance genes, CSIRO, Australia.

    Google Scholar 

  • McMillan, D. E., R. E. Allan & D. E. Roberts, 1986. Association of an isozyme locus and strawbreaker foot rot resistance derived from Aegilops ventricosa in wheat. Theor. Appl. Genet. 72: 743–747.

    Google Scholar 

  • Mettin, D., W.-D. Blüthner & G. Schlegel, 1973. Additional evidence of spontaneous 1B/1R wheat-rye substitutions and translocations. p. 179–184. In: E. R. Sears & L. M. S. Sears (Eds). Proc. 4th Int. Wheat. Genet. Symp. Univ. of Missouri, Columbia, USA.

  • Mickelson-Young, L., T. R. Endo & B. S. Gill, 1995. A cytogenetic ladder map of wheat homoeologous group-4 chromosomes. Theor. Appl. Genet. 90: 1007–1011.

    Google Scholar 

  • Miller, T. E., S. M. Reader, C. C. Ainsworth & R. W. Summers, 1987. The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici from Aegilops speltoides into wheat, T. aestivum. p. 179–183. In: M. L. Jorna & L. A. J. Slootmaker (Eds). Cereal Breeding Related to Integrated Cereal Production: Proc. of the EUCARPIA Conference, Wageningen, The Netherlands.

  • Miller, T. E., S. M. Reader & D. Singh, 1988. Spontaneous non-Robertsonian translocations between wheat chromosomes and an alien chromosome. p. 387–390 In: T. E. Miller & R. M. D. Koebner (Eds). Proc. 7th Int. Wheat. Genet. Symp. Cambridge, UK.

  • Mukai, Y., B. Friebe, J. H. Hatchett & B. S. Gill, 1991. Detection of rye chromatin in wheat specifying resistance to Hessian fly by in situ hybridization using total rye genomes DNA probes. p. 184–188. In: G. Kimber (Ed). Proc. 2nd Int. Symp. Chromosome Eng. in Plants, Columbia, Missouri, USA.

  • Mukai, Y., B. Friebe, J. H. Hatchett, M. Yamamoto & B. S. Gill, 1993. Molecular cytogenetic analysis of radiation-induced wheatrye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102: 88–95.

    Google Scholar 

  • Mukade, K., M. Kamio & K. Hosoda, 1970. The transfer of leaf rust resistance from rye to wheat by intergeneric addition and translocation. p. 69–87. Gamma Field Symp. No. 9. ‘Mutagenesis in Relation to Ploidy level’.

  • Naranjo, T., A. Roca, P. G. Goicoechea & R. Giraldez, 1987. Arm homoeology of wheat and rye chromosomes. Genome 29: 873–882.

    Google Scholar 

  • Naranjo, T., A. Roca, P. G. Goicoechea & R. Giraldez, 1988. Chromosome structure of common wheat: genome reassignment of chromosomes 4A and 4B. p. 115–120. In: T. E. Miller & R. M. D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp. Cambridge, UK.

  • Nyquist, N. E., 1957. Monosomic analysis of stem rust resistance of a common wheat strain derived from Triticum timopheevi Agronomy Journal 49: 222–223.

    Google Scholar 

  • Nyquist, N. E., 1962. Differential fertilization in the inheritance of stem rust resistance in hybrids involving a common wheat strain derived from Triticum timopheevi. Genetics 47: 1109–1124.

    Google Scholar 

  • Pfannenstiel, M. A. & C. L. Niblett, 1978. The nature of the resistance of Agrotricum to wheat streak mosaic virus. Phytopathology 68: 1204–1209.

    Google Scholar 

  • Porte, D. R., J. A. Webster, R. L. Burton, G. J. Puterka & E. L. Smith, 1991. New sources of resistance to greenbug in wheat. Crop. Sci. 31: 1502–1504.

    Google Scholar 

  • Porter, D. R., J. A. Webster & B. Friebe, 1994. Inheritance of greenbug biotype G resistance in wheat. Crop Sci. 34: 625–628.

    Google Scholar 

  • Rajaram, S., C. E. Mann, G. Ortis Ferrara & A. Mujeeb-Kazi, 1983. Adaption, stability and high yield potential of certain 1B/1R CIMMYT wheats. p. 613–621. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.

  • Rao, M. V. P., 1978. The transfer of alien genes for stem rust resistance to durum wheat, p. 338–341. In: S. Ramanujam (Ed). Proc. 5th Int. Wheat Genet. Symp., New Delhi, India.

  • Raupp, W. J., B. Friebe & B. S. Gill, 1995. Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat, Triticum aestivum L., and its relatives. Wheat Inf. Serv. 81: 50–55.

    Google Scholar 

  • Ren, S. X., R. A. McIntosh & Z. L. Lu, 1996a. Genetic suppression of the cereal rye-derived gene Pm8 for powdery mildew resistance in wheat, Euphytica, submitted.

  • Ren, S. X., R. A. McIntosh, P. J. Sharp & T. T. The, 1996b. A storage protein marker associated with the suppressor of Pm8 for powdery mildew resistance in wheat. Theor. Appl. Genet. in press.

  • Riley, R. & V. Chapman, 1958. Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature 182: 713–715.

    Google Scholar 

  • Riley, R., V. Chapman & R. Johnson, 1968a. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res. Camb. 12: 198–219.

    Google Scholar 

  • Riley, R., V. Chapman & R. Johnson, 1968b. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383–384.

    Google Scholar 

  • Rogowsky, P. M., F. L. Y. Guidet, P. Langridge, K. W. Shepherd & R. M. D. Koebner, 1991. Isolation and characterization of wheat-rye recombinants involving 1DS of wheat. Theor. Appl. Genet. 82: 537–554.

    Google Scholar 

  • Rogowsky, P. M., K. W. Shepherd & P. Langridge, 1992. Polymerase chain reaction based mapping of rye involving repeated DNA sequences. Genome 35: 621–626.

    Google Scholar 

  • Rogowski, P. M., M. E. Sorrels, K. W. Shepherd & P. Langridge, 1993. Characterization of wheat-rye recombinants with RFLP and PCR probes. Theor. Appl. Genet. 85: 1023–1028.

    Google Scholar 

  • Schachermayr, R., H. Siedler, M. D. Gale, H. Winzeler, M. Winzeler & B. Keller, 1994. Identification and localization of molecular markers linked to Lr9 leaf rust resistance gene of wheat. Theor. Appl. Genet. 88: 110–115.

    Google Scholar 

  • Schachermayr, G. M., M. M. Messmer, C. Feuillet, H. Winzeler, M. Winzeler & B. Keller, 1995. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor. Appl. Genet. 90: 982–990.

    Google Scholar 

  • Sears, E. R., 1952a. Misdivision of univalents in common wheat. Chromosoma 4: 535–550.

    Google Scholar 

  • Sears, E. R., 1952b. Homoeologous chromosomes in Triticum aestivum. Genetics 37: 624.

    Google Scholar 

  • Sears, E. R., 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9: 1–22.

    Google Scholar 

  • Sears, E. R., 1961. Identification of the wheat chromosome carrying leaf rust resistance from Aegilops umbellulata. Wheat Inf. Serv. 12: 12–13.

    Google Scholar 

  • Sears, E. R., 1966a. Chromosome mapping with the aid of telocentrics. p.370–381. In: J. MacKey (Ed). Proc. 2nd Int. Wheat Genet. Symp. Hereditas Suppl. Vol. 2, Lund, Sweden.

  • Sears, E. R., 1966b. Nullisomic-tetrasomic combinations in hexaploid wheat. p. 29–45. In: R. Riley & K. R. Lewis (Eds)., Chromosome manipulations and plant genetics. Oliver and Boyd Ltd., Edinburgh, London, UK.

    Google Scholar 

  • Sears, E. R., 1972. Chromosome engineering in wheat. p. 23–38. In: Stadler Symp., Vol. 4. Univ. of Missouri, Columbia, USA.

    Google Scholar 

  • Sears, E. R., 1973. Agropyron-wheat transfers induced by homoeologous pairing. p. 191–199. In: E. R. Sears & L. M. S. Sears (Eds). Proc. 4th Int. Wheat. Genet. Symp. Univ. of Missouri, Columbia, USA.

  • Sears, E. R., 1976. Genetic control of chromosome pairing in wheat. Ann. Rev. Genet. 10: 31–51.

    Google Scholar 

  • Sears, E. R., 1977. Analysis of wheat-Agropyron recombinant chromosomes. p. 63–72. In: Proc. 8th Eucarpia Congress, Madrid, Spain.

  • Sears, E. R., 1981. Transfer of alien genetic material to wheat. p. 75–89. In: L. T. Evans & W. J. Peacock (Eds). Wheat Science-Today and Tomorrow. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Sears, E. R., 1993. Use of radiation to transfer alien segments to wheat. Crop Sci. 33: 897–901.

    Google Scholar 

  • Sears, E. R. & M. Okamoto, 1958. Intergenomic chromosome relationship in hexaploid wheat. p. 258–259. Proc. 10th Int. Cong. Genet., Montreal, Canada.

  • Sears, R. G., J. H. Hatchett, T. S. Cox & B. S. Gill, 1992. Registration of Hamlet, a Hessian fly resistant hard red winter wheat germplasm. Crop Sci. 32: 506.

    Google Scholar 

  • Sebesta, E. E. & R. C. Bellingham, 1963. Wheat viruses and their genetic control. p. 184–201. In: J. MacKey (Ed). Proc. 2nd Int. Wheat Genet. Symp. Hereditas Suppl. Vol. 2, Lund, Sweden.

  • Sebesta, E. E., H. C. Young & E. A. Wood, 1972. Wheat streak mosaic virus resistance. Ann. Wheat. Newslet. 18: 136.

    Google Scholar 

  • Sebesta, E. E. & E. A. Wood, 1978. Transfer of greenbug resistance from rye to wheat with X-rays. Agron. Abstr. p. 61–62.

  • Sebesta, E. E., E. L. Smith, H. C. Young, D. R. Porter & J. A. Webster, 1995a. Registration of Teewon wheat germplasm. Crop Sci., in press.

  • Sebesta, E. E., E. A. Wood, D. R. Porter, J. A. Webster & E. L. Smith, 1995b. Registration of Amigo wheat germplasm resistant to greenbug. Crop Sci. 35: 293.

    Google Scholar 

  • Shaner, G., J. J. Roberts & R. E. Finney, 1972. A culture of Puccinia recondita virulent to the wheat cultivar Transfer. Plant Disease Reporter 56: 827–830.

    Google Scholar 

  • Sharma, D. & D. R. Knott, 1966. The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8: 137–143.

    Google Scholar 

  • Sharma, H. C., 1995. How wide can a wide cross be? Euphytica 82: 43–64.

    Google Scholar 

  • Sharma, H. C. & B. S. Gill, 1983. Current status of wide hybridization in wheat. Euphytica 32: 17–31.

    Google Scholar 

  • Smith, E. L., A. M. Schlehuber, H. C. YoungJr. & L. H. Edwards, 1968. Registration of Agent wheat. Crop Sci. 8: 511–512.

    Google Scholar 

  • Soliman, A. S., E. G. Heyne & C. O. Johnston, 1963. Resistance to leaf rust in wheat derived from Aegilops umbellulata translocation lines. Crop Sci. 4: 246–248.

    Google Scholar 

  • The, T. T., B. D. H. Latter, R. A. McIntosh, F. W. Ellison, P. S. Brennan, J. Fisher, G. J. Hollamby, A. J. Rathjen & R. E. Wilson, 1988. Grain yield of near-isogenic lines with added genes for stem rust resistance. p. 901–906. In: T. E. Miller & R. M. D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp. Cambridge, UK.

  • The, T. T., R. B. Gupta, P. L. Dyck, R. Appels, U. Hohmann & R. A. McIntosh, 1992. Characterization of stem rust-resistant derivatives of wheat cultivar Amigo. Euphytica 58: 245–252.

    Google Scholar 

  • Tyler, J. M., J. A. Webster & E. L. Smith, 1985. Biotype E greenbug resistance in wheat streak mosaic virus-resistant wheat germ plasms lines. Crop Sci. 25: 686–688.

    Google Scholar 

  • Tyler, J. M., J. A. Webster, E. E. Sebesta & E. L. Smith, 1986. Inheritance of biotype E greenbug resistance in bread wheat CI17882 and its relationship with wheat streak mosaic virus resistance. Euphytica 35: 615–620.

    Google Scholar 

  • Tyler, J. M., J. A. Webster & O. G. Merkle, 1987. Designation of genes in wheat germplasm conferring greenbug resistance. Crop Sci. 27: 526–527.

    Google Scholar 

  • Vahl, U. & G. Müller, G., 1991. Endopeptidase Ep-1 as a marker for the eyespot resistance gene Pch-1 from Aegilops ventricosa in wheat line H-93–70. Plant Breeding 107: 93–70.

    Google Scholar 

  • Villareal, R. L., A. Mujeeb-Kazi, S. Rajaram & E. Del-Toro, 1991. The effects of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breeding 106: 77–81.

    Google Scholar 

  • Wang, R. C. & G. H. Liang, 1977. Cytogenetic location of genes for resistance to wheat streak mosaic in an Agropyron substitution line. J. Hered. 68: 375–378.

    Google Scholar 

  • Wang, R. C., G. H. Liang & E. G. Heyne, 1977. Effectiveness of ph gene in inducing homoeologous chromosome pairing in Agrotricum. Theor. Appl. Genet. 51: 139–142.

    Google Scholar 

  • Wang R.R.-C., & X.-Y. Zhang, 1995. A wheat streak mosaic resistant wheat germplasm derived from homoeologous pairing: evidence from genomic in situ hybridization. Am. Soc. Agron. Abstr. p. 79.

  • Wells, D. G., R. Wong, Sze-Chung, C. L. Lay, W. A. S. Gardner & G. W. Buchenau, 1973. Registration of C.I.15092 and C.I.15093 wheat germ plasm. Crop Sci. 13: 776.

    Google Scholar 

  • Wells, D. G., R. S. Kota, H. S. Sandhu, W. A. S. Gardner & K. F. Finney, 1982. Registration of one disomic substitution line and five translocation lines of winter wheat germ plasm resistant to wheat streak mosaic virus. Crop Sci. 22: 1277–1278.

    Google Scholar 

  • Werner, J. E., T. R. Endo & B. S. Gill, 1992. Towards a cytogenetically based physical map of the wheat genome. Proc. Natl. Acad. Sci. USA 89: 11307–11311.

    Google Scholar 

  • Whelan, E. D. P. 1988. Transmission of a chromosome from decaploid Agropyron elongatum that confers resistance to the wheat curl mite in common wheat. Genome 30: 293–298.

    Google Scholar 

  • Whelan, E. D. P., T. G. Atkinson & R. I. Larson, 1983. Registration of LRS-IF 193 wheat germplasm. Crop Sci. 23: 194.

    Google Scholar 

  • Whelan, E. D. P. & R. L. Conner, 1989. Registration of LRS-70–50 wheat germplasm. Crop Sci. 29: 838.

    Google Scholar 

  • Whelan, E. D. P., R. L. Conner, J. B. Thomas & A. D. Kuzyk, 1986. Transmission of a wheat alien translocation with resistance to the wheat curl mite in common wheat, Triticum aestivum L.. Can. J. Genet. Cytol. 28: 294–297.

    Google Scholar 

  • Whelan, E. D. P. & G. E. Hart, 1988. A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 30: 289–292.

    Google Scholar 

  • Whelan, E. D. P. and O. M. Lukow. 1990. The genetics and gliadin protein characteristics of a wheat-alien translocation that confers resistance to colonozation by the wheat curl mite. Genome 33: 400–404.

    Google Scholar 

  • Wienhues, A., 1960. Die Ertragsleistung rostresistenter 44- und 42-chromosomiger Weizen-Quecken-Bastarde. Der Züchter 30: 194–202.

    Google Scholar 

  • Wienhues, A., 1966. Transfer of rust resistance of Agropyron to wheat by addition substitution and translocation. p. 328–341. In: J. MacKey (Ed). Proc. 2nd Int. Wheat Genet. Symp. Hereditas Suppl. Vol. 2, Lund, Sweden.

  • Wienhues, A., 1967. Die Übertragung der Rostresistenz aus Agropyron intermedium in den Weizen durch Translokation. Der Züchter 37: 345–352.

    Google Scholar 

  • Wienhues, A., 1971. Substitution von Weizenchromosomen aus verschiedenen homoeologen Gruppen durch ein Fremdchromosom aus Agropyron intermedium. Z. Pflanzenzüchtg. 65: 307–321.

    Google Scholar 

  • Wienhues, A., 1973. Translocations between wheat chromosomes and an Agropyron chromosome conditioning rust resistance. p. 201–207. In: E. R. Sears & L. M. S. Sears (Eds). Proc. 4th Int. Wheat. Genet. Symp. Univ. of Missouri, Columbia, USA.

  • Wienhues, A., 1979. Translokationslinien mit Resistenz gegen Braunrosrt (Puccinia recondita) aus Agropyron intermedium. Ergebnisse aus der Rückkreuzung mit Winterweizensorten. Z. Pflanzenzüchtg. 82: 149–161.

    Google Scholar 

  • Wood, E. A.Jr., E. E. Sebesta & K. J. Stark, 1974. Resistance of ‘Gaucho’ triticale to Schizaphis graminum. Environ. Entomol. 3: 720–721.

    Google Scholar 

  • Worland, A. J., C. N. Law, T. W. Hollins, R. M. D. Koebner & A. Guira, 1988. Location of a gene for resistance to eyespot (Pseudocercosporella herpotrichoides) on chromosome 7D of bread wheat. Plant Breeding 101: 43–51.

    Google Scholar 

  • Yamamori, M., 1994. An N-band marker for gene Lr18 for resistance to leaf rust in wheat. Theor. Appl. Genet. 89: 643–646.

    Google Scholar 

  • Zeller, F. J., 1973. 1B/1R wheat-rye chromosome substitutions and translocations. p. 209–221. In: E. R. Sears & L. M. S. Sears (Eds). Proc. 4th Int. Wheat. Genet. Symp. Univ. of Missouri, Columbia, USA.

  • Zeller, F. J., G. Günzel, G. Fischbeck, P. Gerstenkorn & D. Weipert, 1982. Veränderungen der Backeigenschaften des Weizens durch die Weizen-Roggen-Chromosomen Translokation 1B/1R. Getreide, Mehl und Brot 36: 141–143.

    Google Scholar 

  • Zeller, F. J. & S. L. Hsam, 1983. Broadening the genetic variability of cultivated wheat by utilizing rye chromation. p. 161–173. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.

  • Zeller, F. J. & E. Fuchs, 1983. Cytologie und Krankheitsresistenz einer 1A/1R und mehrerer 1B/1R-Weizen-Roggen-Translokationssorten. Z. Pflanzenzüchtg. 90: 285–296.

    Google Scholar 

  • Zhang, H. B. & J. Dvorak, 1990. Characterization and distribution of an interspersed repeated nucleotide sequence from Lophopyrum elongatum and mapping of a segregation-distortion factor with it. Genome 33: 927–936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 96-55-J from the Kansas Experimental Station, Kansas State University, Manhattan, KS 66506-5502, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friebe, B., Jiang, J., Raupp, W.J. et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87 (1996). https://doi.org/10.1007/BF00035277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035277

Key words

Navigation