Skip to main content
Log in

A fatigue crack growth theory

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fatigue crack growth model proposed by Frost and Dixon, based on the different crack tip geometries of a loaded and unloaded crack, is restated and extended using the stress intensity factor concept. The resulting crack growth predictions agree reasonably well both with experimental fatigue crack growth data, and data on the threshold stress necessary for fatigue crack growth.

Résumé

Le modèle de propagation des fissures de fatigue proposé par Frost et Dixon, qui repose sur les différences de géométrie de l'extrémité d'une fissure selon que celle-ci est sous contrainte ou déchargée, est reformulé et étendu, en utilisant le concept de facteur d'intensité de contrainte.

Les prédictions de propagation de fissure qui résultent de cette nouvelle expression sont en bon accord avec les données expérimentales de propagation des fissures en fatigue, ainsi qu'avec la valeur critique de la contrainte, nécessaire pour que cette propagation ait lieu.

Zusammenfassung

Das von Frost und Dixon vorgeschlagene Modell der Fortpflanzung von Ermüdungsrissen, welches auf den Unterschieden in der Geometrie einer belasteten und einer nicht belasteten Probe beruht, wird unter Hinzuziehen des Begriffs des Spannungsintensitätsfaktors neu formuliert und erweitert.

Die sich aus dieser neuen Formulierung ergebenden Voraussagen stehen in guter Übereinstimmung mit den experimentellen Werten, welche für das Fortschreiten von Ermüdungsrissen und die für die Fortpflanzung des Risses erforderliche kritische Belastung ermittelt wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Brown and J. E. Srawley, Plane strain crack toughness testing of high strength metallic materials, ASTM STP 410, Philadelphia, Pa: American Society for Testing and Materials (1966).

    Google Scholar 

  2. J. E. Srawley and W. F. Brown, Fracture toughness testing, ASTM (in co-operation with NASA), Symp. on fracture toughness testing and its applications, ASTM STP 381, pp. 133–198, Philadelphia, Pa: American Society for Testing and Materials (1965).

    Google Scholar 

  3. P. C. Paris and G. C. Sih, Stress analysis of cracks, ASTM (in co-operation with NASA), Symp. on fracture toughness testing and its application, ASTM STP 381, pp. 30–83, Philadelphia, Pa: American Society for Testing and Materials (1965).

    Google Scholar 

  4. N. E. Frost and J. R. Dixon, A theory of fatigue crack growth, Int. J. Fracture Mech., 3, 4 (1967) 301–316.

    Google Scholar 

  5. N. E. Frost, L. P. Pook and K. Denton, A fracture mechanics analysis of fatigue crack growth data for various materials, Engng. Fracture Mech., 3, 2 (1971) 109–126.

    Google Scholar 

  6. L. P. Pook, Discussion of “On the sharpness of cracks compared with Well's COD”, by J. E. Srawley, J. L. Swedlow and E. Roberts, Jr., Int. J. Fracture Mech., 7, 1 (1971) 125–126.

  7. M. Creager and P. C. Paris, Elastic field equations for blunt cracks with reference to stress corrosion cracking, Int. J. Fracture Mech., 4, 3 (1967) 247–252.

    Google Scholar 

  8. J. R. Rice, Mechanics of crack tip deformation and extension by fatigue, Fatigue Crack Propagation, ASTM STP 415, pp. 247–309, Philadelphia, Pa: American Society for Testing and Materials (1967).

    Google Scholar 

  9. L. P. Pook, The effect of crack angle on fracture toughness, Engng. Fracture Mech., (to be published.)

  10. N. E. Frost, The growth of fatigue cracks, First Int. Conf. on Fracture, Sendai, 3 (1965) 1433–1459.

  11. N. E. Frost, Effect of mean stress on the rate of growth of fatigue cracks in sheet materials, J. Mech. Engng. Sci., 4, 1 (1962) 22–35.

    Google Scholar 

  12. L. P. Pook, Effect of hardness and tensile mean stress on fatigue crack growth in beryllium copper, J. Mech. Engng. Sci., 11, 3 (1969) 343–345.

    Google Scholar 

  13. P. C. Paris, Testing for very slow growth of fatigue cracks, Closed Loop, 2, 5 (1970) 11–14.

    Google Scholar 

  14. H. H. Johnson and P. C. Paris, Sub-critical flaw growth, Engng. Fracture Mech., 1, 1 (1968) 3–45.

    Google Scholar 

  15. K. J. Marsh, Unpublished results.

  16. A. F. Greenan, NEL Report (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pook, L.P., Frost, N.E. A fatigue crack growth theory. Int J Fract 9, 53–61 (1973). https://doi.org/10.1007/BF00035955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035955

Keywords

Navigation