Skip to main content
Log in

An analysis of fatigue cracks in fillet welded joints

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In most of the lower fatigue strength welded joints failure occurs by the propagation of a semi-elliptical surface crack which initiates at the weld toe. In order to analyse the progress of these cracks using fracture mechanics techniques, the solution for the stress intensity factor, K, is required. Fatigue cracks in most welded joints adopt shapes which give low a/2c values (up to approximately 0.3) while solutions in the literature are more applicable to a/2c values close to 0.5. Therefore, results in the literature were used to estimate the stress intensity factor for cracks with low a/2c values. Furthermore, the effect of the weld stress concentration factor was incorporated in the solution. The accuracy of the resulting solution was confirmed by using it to determine ΔK values of weld toe cracks for which crack propagation data were available. The results agreed with the expected da/dN vs. ΔK scatterband obtained from centre-notched specimens.

Résumé

Dans la plupart des soudures ayant une résistance à la fatigue moins élevée, la défaillance survient à cause de la propagation d'une fissure de surface semi-elliptique commençant à l'endroit de transition de la soudure. Pour l'analyse de la progression de telles fissures à l'aide de méthodes de la mécanique de la rupture, on a besoin de la solution pour le facteur de l'effort de tension, K. Dans presque toutes les soudures, les fissures de fatigue prennent des formes qui donnent de basses valeurs a/2c (jusqu'à près de 0,3), alors que les solutions figurant dans les ouvrages de métier s'appliquent plutôt à des valeurs a/2c de près de 0,5. Pour cette raison, on a utilisé de résultats figurant dans les ouvrages de métier pour évaluer le facteur de l'effort de tension pour des fissures ayant de basses valeurs a/2c. De plus, tenant compte de l'effet du facteur de la concentration des tensions, ce facteur a été incorporé dans la solution. On a confirmé l'exactitude de la solution résultante, en l'utilisant pour la détermination des valeurs ΔK de fissures situées à l'endroit de transition pour lesquelles on possédait des données de propagation. Les résultats s'accordaient avec la bande de dispersion prévue, da/dN vs. ΔK, obtenue à partir des éprouvettes entaillées au centre.

Zusammenfassung

In den meisten der Schweißverbindungen von niedrigerer Dauerfestigkeit stellt sich Versagen durch die Ausbreitung eines halbelliptischen, am Nahtübergang entstandenen, Oberflächenrisses ein. Um den Verlauf solcher Risse unter Anwendung von bruchmechanischen Methoden analysieren zu können, ist die Lösung des Spannungsgrößenfaktors, K, notwendig. Ermüdungsrisse nehmen in den meisten Schweißverbindungen Formen an, die zu niedrigen a/2c-Werten (von bis zu etwa 0,3) führen, während die in der Schweißliteratur angegebenen Lösungen mehr auf a/2c-Werte nahe bei 0,5 zu beziehen sind. Daher wurden Resultate aus der Schweißliteratur dazu benutzt, um den Spannungsgrößenfaktor für Risse mit niedrigen a/2c-Werten zu errechnen. Sodann wurde die Wirkung des Schweißspannungskonzentrations-faktors in die Lösung miteingeschlossen. Die Genauigkeit der erzielten Lösung bestätigte man, indem man sie zur Bestimmung von ΔK-Werten von Nahtübergangsrissen, für welche Rißausbreitungsdaten vorhanden waren, benutzte. Die Resultate stimmten mit dem erwarteten da/dN vs. ΔK-Streuungsband der mittegekerbten Versuchsproben überein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Irwin, Crack extension force for a part-through crack in a plate, Paper No. 62-WA-13, J. Appl. Mechs., Trans. ASME December (1962).

  2. I. N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid, Procs. Physical Soc. of London, 187 (1946) 229.

    Google Scholar 

  3. P. C. Paris and G. C. Sih, Stress analysis of cracks, Fracture toughness testing and its applications, ASTM STP 381 (1965) 30.

    Google Scholar 

  4. F. W. Smith, A. S. Kobayashi and A. F. Emery, Stress intensity factors for penny-shaped cracks, J. Appl. Mechs., Trans ASME, December (1967).

  5. B. Gross, J. E. Srawley and W. F. Brown, Stress intensity factors for single-edge-notch tension specimen by boundary collocation of a stress function, NASA Tech. Note D-2395, August (1964).

  6. A. E. Green and I. N. Sneddon, The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid, Procs. Cambridge Phil. Soc., 46 (1950) 159.

    Google Scholar 

  7. F. W. Smith, Stress intensity factors for a semi-elliptical surface flaw, Structural Development Research Memo No. 17, The Boeing Company, 1966.

  8. A. S. Kobayashi and W. C. Moss, Stress intensity magnification factors for a surface flawed tension plate and notched round tension bar, Procs. 2nd Int. Conf. on Fracture, Brighton 1969.

  9. F. W. Smith and M. J. Alavi, Stress intensity factors for part-circular surface flaws, Procs. 1st Int. Pressure Vessel Conference, Delft, October (1969).

  10. R. W. Thresher, A surface crack in a finite solid, Ph.D. Thesis, Colorado State University, August 1970; published in J. Appl. Mechs., Trans. ASME, March 1972, 195.

  11. G. R. Irwin, H. Liebowitz and P. C. Paris, A mystery of fracture mechanics, Engineering Fracture Mechanics, 1 (1) (1968) 235.

    Google Scholar 

  12. A. S. Kobayashi and R. G. Forman, On the axial rigidity of a perforated strip and the strain energy release rate in a centrally notched strip subjected to uniaxial tension, Paper No. 63-WA-29, ASME (1963), J. Basic Eng., December (1964).

  13. A. S. Kobayashi, M. Ziv and L. R. Hall, Approximate stress intensity factor for an embedded elliptical crack near two parallel free surfaces, Int. J. Fracture Mechs., 1 (2) (1965) 81.

    Google Scholar 

  14. G. R. Irwin, Linear fracture mechanics, fracture transition and fracture control, Engineering Fracture Mechanics, 1 (1968) 241.

    Google Scholar 

  15. J. R. Rice, Plastic yielding at a crack tip, Procs. 1st Int. Conf. on Fracture, Sendai (1965) 283.

  16. J. Schijve, Analysis of the fatigue phenomenon in aluminium alloys, NRL-TR M2122, 1964.

  17. J. R. Rice, Mechanics of crack tip deformation and extension by fatigue. Fatigue crack propagation, ASTM STP 415, 1966, 247.

    Google Scholar 

  18. D. J. Hayes and S. J. Maddox, The stress intensity factor of a crack at the toe of a fillet weld, The Weld. Inst. Research Bulletin, 13 (1) (1972).

  19. D. J. Hayes, A practical application of Buekner's formulation for the determination of stress intensity factors, Int. J. Fracture Mechanics, 8 (2), June (1972).

  20. W. R. Cherry, Stress concentration factors in main members due to welded stiffeners, Weld. J., 20 (12) (1941).

  21. W. Kenyon, W. B. Morrison and A. G. Quarrel, The fatigue strength of welded joints in structural steels, Brit. Weld. J., 13 (3) (1966) 123.

    Google Scholar 

  22. D. Cartwright and D. P. Rooke, Stress intensity factors: a review, presented at Annual Conf. of the Stress Analysis Group of the Institute of Physics, University of Leicester, September 1971 (unpublished).

  23. S. J. Maddox, Calculating the fatigue strength of a welded joint using fracture mechanics, Metal Constr., 2 (8) (1970) 327–31.

    Google Scholar 

  24. S. J. Maddox, Fatigue crack propagation data obtained from parent plate, weld metal and HAZ in structural steels, Weld. Res. Inst. 4 (1) (1974) 36–60.

    Google Scholar 

  25. S. J. Maddox, The influence of fracture mode on fatigue crack propagation, Weld. Inst. Report E/46/71 (1971).

  26. S. J. Maddox, Fracture mechanics applied to fatigue in welded structures, Procs. Conf. Fatigue of Welded structures, The Welding Institute (1971).

  27. S. J. Maddox, The application of fracture mechanics techniques to fatigue in welded joints, Weld. Inst. Research Bulletin, Pt. 1 in 12 (11) (1971); Pt. 2 in 13 (1), (1972).

  28. S. J. Maddox, A fracture mechanics approach to service load fatigue in welded structures, Weld. Res. Inst. 6 (2) (1974) 1–30.

    Google Scholar 

  29. Item, A fracture mechanics analysis of the fatigue behaviour of a fillet welded joint, Ibid. 4 (3) (1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddox, S.J. An analysis of fatigue cracks in fillet welded joints. Int J Fract 11, 221–243 (1975). https://doi.org/10.1007/BF00038890

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00038890

Keywords

Navigation