Skip to main content
Log in

A theory of the initiation of creep crack growth

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A computer simulation of the time dependent development of the plastic zone ahead of a crack loaded in uniform tension was performed. The material was assumed to deform according to a creep law relating the local strain rate to the local stress. The plastic zone was modelled by an array of edge dislocations coplanar with the crack. For a given time the stress was found to be uniform in a region ahead of the crack. This region increased and the local stress decreased with increasing time. The distribution of dislocations in the zone at a given time was found to be almost the same as that given by the Bilby, Cottrell and Swinden model (1963) if the friction stress in that model was replaced by an apparent friction stress equal to the uniform stress ahead of the crack. This apparent friction stress is dependent on both the applied stress and time. Assuming a critical crack opening displacement (COD) or a critical value of theJ integral,J c, to be the criteria for the onset of the creep crack growth the initiation time can be calculated using the results of this study. A good agreement between the theory and experiment is obtained for two different CrMoV steels. This comparison with experiments suggests that the COD is an appropriate crack growth initiation parameter for both ductile and brittle materials whilstJ cdoes not seem to be applicable in creep fracture.

Résumé

Une simulation par calculateur du développement fonction du temps de la zône plastique située devant une fissure soumise à tension uniforme a été effectuée. Le matériau est supposé pouvoir se déformer suivant une loi de fluage mettant en relation la vitesse de déformation locale et la tension locale. La zône plastique est représentée par une série de dislocations-coin coplanaires à la fissure. Pour un temps déterminé, la tension a été trouvée uniforme dans la région située de vant la fissure. Cette région s'étend, et la tension locale décroit, lorsque le temps s'accroit. La distribution des dislocations dans la zône à un moment déterminé est trouvée être sensiblement la même que celle donnée par le modèle de Bilby, Cottrell et Swinden (1963), pour autant que la tension de friction dans ce modèle soit remplacée par une tension de friction apparente égale à la tension uniforme située en avant de la fissure. Cette tension apparente de friction dépend à la fois de la contrainte appliquée et du temps. En supposant qu'une valeur critique du COD ou de l'intégraleJ,J cconstitue le critère pour le démarrage d'une fissure de fluage, la durée de l'amorçage peut être calculée en utilisant les résultats de cette étude. Un bon accord entre la théorie et l'expérience a été obtenu dans le cas de deux aciers au CrMoV différents. Cette comparaison avec l'expérience suggère que le COD est un paramètre valable pour l'accroissement d'une fissure dans le cas de matériaux ductiles et de matériaux fragiles, tandis queJ cne paraît pas applicable dans le cas des ruptures dues au fluage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hull and D. E. Rimmer,Philosophical Magazine, 4 (1959) 673.

    Google Scholar 

  2. M. V. Speight and J. E. Harris,Met. Science Journal, 1 (1967) 83.

    Google Scholar 

  3. P. T. Heald and J. A. Williams,Philosophical Magazine, 22 (1970) 1095.

    Google Scholar 

  4. J. Weertman,Metallurgical Transactions, 5 (1974) 1743.

    Google Scholar 

  5. R. Raj and M. F. Ashby,Acta Metallurgica, 23 (1975) 653.

    Google Scholar 

  6. R. Raj,Metallurgical Transactions, 6A (1975) 1499.

    Google Scholar 

  7. M. J. Siverns and A. T. Price,Nature, 228 (1970) 760.

    Google Scholar 

  8. K. Robson,International Conference on Properties of Creep Resistant Steels, Düsseldorf, Paper 4.5 (1975).

  9. D. V. Thornton,International Conference on Properties of Creep Resistant Steels, Düsseldorf, Paper 6.5 (1975).

  10. G. J. Neate and M. J. Siverns,International Conference on Creep and Fatique in Elevated Temperature Applications, Philadelphia/Sheffield, Paper C234 (1973/74).

  11. J. D. Landes and J. A. Begley,ASTM Special Technical Publication, 590 (1976) 128.

    Google Scholar 

  12. G. A. Webster,Proceedings of the Conference on Mechanics and Physics of Fracture, Cambridge, Paper 18 (1975).

  13. J. R. Haigh,Materials Science and Engineering, 20 (1975) 213.

    Google Scholar 

  14. J. R. Haigh,Materials Science and Engineering, 20 (1975) 225.

    Google Scholar 

  15. R. D. Nicholson and C. L. Formby,International Journal of Fracture, 11 (1975) 595.

    Google Scholar 

  16. R. M. Goldhof and A. J. Brothers,ASME Journal of Basic Engineering, March (1968) 37.

  17. R. Ohtani, K. Doi, S. Nakamura and A. Nitta,Journal of the Society for Materials Science Japan, 22 (1973) 291.

    Google Scholar 

  18. S. Taira and R. Ohtani,International Conference on Creep and Fatigue in Elevated Temperature Applications, Philadelphia/Sheffield, Paper C213 (1973/74).

  19. A. D. Batte, Private communication (1975).

  20. B. A. Bilby, A. H. Cottrell and K. H. Swinden,Proceedings of the Royal Society, A272 (1963) 304.

    Google Scholar 

  21. N. I. Muskhelishvili,Some basic problems of the mathematical theory of elasticity, P. Noordhoff, groningen, The Netherlands (1953).

    Google Scholar 

  22. V. Vitek,Journal of the Mechanics and Physics of Solids, 27 (1976) 67.

    Google Scholar 

  23. V. Vitek,Proceedings of the Conference on Computer Simulation for Materials Applications, NBS, eds. R. J. Arsenault, J. R. Beeler and J. A. Simmons (1976) 909.

  24. P. T. Heald, G. M. Spink and P. J. Worthington,Materials Science and Engineering, 10 (1972) 129.

    Google Scholar 

  25. G. G. Chell,Materials Science and Engineering, 17 (1975) 227.

    Google Scholar 

  26. G. G. Chell,International Journal of Fracture, 12 (1976) 135.

    Google Scholar 

  27. G. G. Chell and G. M. Spink,Engineering Fracture Mechanics, to be published (1977).

  28. G. G. Chell and A. Davidson,Materials Science and Engineering, 24 (1976) 45.

    Google Scholar 

  29. A. A. Wells,Proceedings of the Crack Propagation Symposium, 1 Cranfield (1961) 201.

  30. A. H. Cottrell,Iron and Steel Institute Special Report, No. 69 (1961) 231.

  31. J. A. Begley and J. D. Landes,ASTM Special Technical Publication, 514 (1972) 1.

    Google Scholar 

  32. V. Vitek,Journal of the Mechanics and Physics of Solids, 24 (1976) 263.

    Google Scholar 

  33. G. D. Branch, J. B. Marriott and M. C. Murphy,International Conference on Properties of Creep Resistant Steels, Düsseldorf, Paper 7.1 (1972).

  34. J. Weertman,International Journal of Fracture Mechanics, 2 (1966) 460.

    Google Scholar 

  35. B. A. Bilby and P. T. Heald,Proceedings of the Royal Society, A305 (1968) 429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitek, V. A theory of the initiation of creep crack growth. Int J Fract 13, 39–50 (1977). https://doi.org/10.1007/BF00040874

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040874

Keywords

Navigation