Skip to main content
Log in

Coupled systems of nonlinear wave equations and finite-dimensional lie algebras I

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We study coupled systems of nonlinear wave equations from the point of view of their formal Darboux integrability. By making use of Vessiot's geometric theory of differential equations, it is possible to associate to each system of nonlinear wave equations a module of vector fields on the second-order jet bundle — the Vessiot distribution. By imposing certain conditions of the structure of the Vessiot distributions, we identify the so-called separable Vessiot distributions. By expressing the separable Vessiot distributions in a basis of singular vector fields, we show that there are, at most, 27 equivalence classes of such distributions. Of these, 14 classes are associated with Darboux integrable nonlinear systems. We take one of these Darboux integrable classes and show that it is in correspondence with the class of six-dimensional simply transitive Lie algebras. Finally, this later result is used to reduce the problem of constructing exact general solutions of the nonlinear wave equations understudy to the integration of Lie systems. These systems were first discovered by Sophus Lie as the most general class of ordinary differential equations which admit nonlinear superposition principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbashov, B., Nesterenko, V. V., and Chervaykov, A. M.: ‘General Solutions of Non-Linear Equations in the Theory of Minimal Surfaces’, Sov. J. Theor. Math. Phys. 52 (1982), 3–13.

    Google Scholar 

  2. Bryant, R. L., Chern, S. S., and Griffiths, P.A.: ‘Exterior Differential Systems’, Proc. 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol 1. Science Press, Beijing, China, 1982 p. 219.

    Google Scholar 

  3. Cartan, E.: Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945.

    Google Scholar 

  4. Goursat, E., Leçons sur l'intégration des équations aux dérivées partielles du second ordre, Vol I (1890); Vol II (1898), Gautier-Villars, Paris.

    Google Scholar 

  5. Goursat, E.: ‘Recherches sur quelques équations aux dérivées partielles du second ordre’, Ann. Fac. Toulouse, 2 e serie 1 (1899), 31–78, 439–464.

    Google Scholar 

  6. Hermann, R.: ‘E. Cartan's Geometric Theory of Partial Differential Equations’, Adv. Math. 1 (1965), 265–317.

    Google Scholar 

  7. Hermann, R.: Geometry, Physics and Systems, Marcel Dekker, New York, 1973.

    Google Scholar 

  8. Hermann, R.: ‘Geometric Construction and Properties of Some Families of Solutions of Non-Linear Partial Differential Equations‘, J. Math. Phys. 24 (1983), 510–521.

    Google Scholar 

  9. Leznov, A. N. Saveliev, M. V., and Smirnov, V. G.: ‘Two Dimensional Exactly and Completely Integrable Dynamical Systems’, Commun. Math. Phys. 89 (1982), 59–75.

    Google Scholar 

  10. Leznov, A. N. and Smirnov, V. G.: ‘Graded Algebras of the Second Rank and Integration of Nonlinear Equations Y z\-z =exp(2Y)-exp(-2Y), Y z\-z =2 exp(Y)-exp(-2Y)’, Lett. Math. Phys. 5 (1981), 31–36.

    Google Scholar 

  11. Leznov, A. N. and Saveliev, M. V.: ‘Two-Dimensional Nonlinear String-Type Equations and their Exact Integration’, Lett. Math. Phys. 6 (1982), 505–510.

    Google Scholar 

  12. Leznov, A. N., Saveliev, M. V., and Smirnov, V. G.: ‘Theory of Group Representations and Integration of Non-Linear Dynamical Systems’, Sov. J. Theor. Math. Phys. 418 (1981), 3.

    Google Scholar 

  13. Vessiot, E.: ‘Sur une théorie nouvelle des problèmes généraux d'intégration’, Bull. Soc. Math. Fr. 52 (1924), 336–395.

    Google Scholar 

  14. Vessiot, E.: ‘Sur les faisceaux de transformations infinitésimales associés aux équations dérivées partielles du second ordre F(x, y, z, p, q, r, s, t)=0’, J. Math. 15 (1936), 301–320.

    Google Scholar 

  15. Vessiot, E.: ‘Sur une classe de faisceaux complets de degrée 2’, Bull. Soc. Math. Fr. 45 (1937), 149–167.

    Google Scholar 

  16. Vessiot, E.: ‘Sur les équations aux dérivées partielles du second ordre F(x, y, z, p, q, r, s, t)=0 intégrable par la méthode de Darboux’, J. Math. Pure Appl. 9 e, 18 (1939), 1–61.

    Google Scholar 

  17. Vessiot, E.: ‘Sur les équations aux dérivées partielles du second ordre F(x, y, z, p, q, r, s, t)=0 intégrable par la méthode de Darboux’, J. Math. Pure Appl. 9 e, 21 (1942), 1–60.

    Google Scholar 

  18. Vessiot, E.: ‘Sur la recherche des équations finies d'un groupe continu fini de transformations et sur les équations de Lie’, Ann. Fac. de Toulouse 10 (1896), C1-C26.

    Google Scholar 

  19. Vessiot, E.: ‘Sur les systèmes d'équations différentielles du premier ordre qui ont des systèmes fondamentaux d'intégrals’, Ann. Fac. de Toulouse 8 (1894), H1-H33.

    Google Scholar 

  20. Vessiot, E.: ‘Sur les équations F(x, y, z, p, q, r, s, t)=0 qui ont une intégrale générale explicite’, Compte Rend. 191 (1937), 779–781.

    Google Scholar 

  21. Anderson, R. L.: ‘A Nonlinear Superposition Principle Admitted by Coupled Riccati Equations of the Projective Type’, Lett. Math. Phys. 4 (1980), 1–7.

    Google Scholar 

  22. Anderson, R. L., Harnard, J., and Winternitz, P.: ‘Group Theoretical Approach to Superposition Rules for Systems of Riccati Equation's’, Lett. Math. Phys. 5 (1981), 143–148.

    Google Scholar 

  23. Shnider, S. and Winternitz, P.: ‘Classification of Systems of Nonlinear Ordinary Differential Equations with Superposition Principles’, J. Math. Phys. 25 (1984), 3155–3165.

    Google Scholar 

  24. Nielsen, O. A.: ‘Unitary Representations and Coadjoint Orbits of Low Dimensional Nilpotent Lie Groups’, Queen's Papers in Pure and Applied Mathematics, No. 63, 1983.

  25. Lie, S.: ‘General Investigations of Differential Equations which Admit a Finite Continuous Group’, in R. Hermann (ed.), Cartanian Geometry, Nonlinear Waves and Control Theory, Part B, Interdisciplinary Mathematics, Vol XXI, Math. Sci. Press, 1980 p. 487.

  26. Vassiliou, P. J.: ‘The Geometry of Nonlinear Wave Equations in Two Independent Variables: Methods for Exact Solution,’ PhD Thesis, Univ. of Sydney, 1986.

  27. Darboux, G.: ‘Sur les équations aux dérivées partielles du second ordre’, Ann. École Normale Sup. 7 (1870), 163–173.

    Google Scholar 

  28. Forsythe, A. R.: Theory of Differential Equations, Vol VI, Cambridge Univ. Press, 1906.

  29. Fackerell, E. D.: Isovectors and Prolongation Structures by Vessiot's Vector Field Formulation of Partial Differential Equations, Lecture Notes in Physics, No. 239, Springer-Verlag, 1986.

  30. Vinogradov, A. M.: ‘Geometry of Nonlinear Differential Equations’, English translation in J. Sov. Math 17 (1981), 1624–1649.

    Google Scholar 

  31. Kuperschmidt, B. A.: ‘Geometry of Jet Bundles and the Structure of Lagrangian and Hamiltonian Formalisms’, in Lecture Notes in Physics No. 775, Springer-Verlag, 1980.

  32. Vessiot, E.: ‘Sur l'intégration des faisceaux de transformations infinitésimales dans le cas où, le degré du faisceau étant n celui du faisceau dérivé est n+1’, Ann. École Normale 45 (1928), 189–253.

    Google Scholar 

  33. Eisenhart, L. P.: Continuous Transformation Groups, Princeton University Press, 1933.

  34. Lie, S. and Scheffers, G.: Vorlesungen über kontinuierliche Gruppen mit geometrischen und anderen Anwendungen, Teubner, Leipzig, 1983; reprinted by Chelsea Publ. Co., N.Y., 1967.

    Google Scholar 

  35. Winternitz, P.: ‘Lie Groups and Solutions of Nonlinear Differential Equations’, in Nonlinear Phenomena, Lecture Notes in Physics, No. 189, Springer-Verlag, 1982.

  36. Pommaret, J. F.: Differential Galois Theory, Gordon and Breach, 1983.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassiliou, P.J. Coupled systems of nonlinear wave equations and finite-dimensional lie algebras I. Acta Appl Math 8, 107–147 (1987). https://doi.org/10.1007/BF00046710

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046710

AMS (MOS) subject classification (1980)

Key words

Navigation