Skip to main content
Log in

Mathematical problems of stochastic quantum mechanics: Harmonic analysis on phase space and quantum geometry

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper we review the mathematical methods and problems that are specific to the programme of stochastic quantum mechanics and quantum spacetime. The physical origin of these problems is explained, and then the mathematical models are developed. Three notions emerge as central to the programme: positive operator-valued (POV) measures on a Hilbert space, reproducing kernel Hilbert spaces, and fibre bundle formulations of quantum geometries. A close connection between the first two notions is shown to exist, which provides a natural setting for introducing a fibration on the associated overcomplete family of vectors. The introduction of group covariance leads to an extended version of harmonic analysis on phase space. It also yields a theory of induced group representations, which extends the results of Mackey on imprimitivity systems for locally compact groups to the more general case of systems of covariance. Quantum geometries emerge as fibre bundles whose base spaces are manifolds of mean stochastic locations for quantum test particles (i.e., spacetime excitons) that display a phase space structure, and whose fibres and structure groups contain, respectively, the aforementioned overcomplete families of vectors and unitary group representations of phase space systems of covariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prugovečki, E.: Stochastic Quantum Mechanics and Quantum Spacetime, D. Reidel, Dordrecht, 1984.

    Google Scholar 

  2. Ali, S. T.: Riv. Nuovo Cim. 11, No. 8 (1985), 1.

    Google Scholar 

  3. Davies, E. B. and Lewis, J. T.: Commun. Math. Phys. 17 (1970), 239.

    Google Scholar 

  4. Davies, E. B.: Quantum Theory of Open Systems, Academic Press, London, 1976.

    Google Scholar 

  5. Ludwig, G.: Foundations of Quantum Mechanics I, Springer, Berlin, 1983.

    Google Scholar 

  6. Prugovečki, E.: Found. Phys. 4 (1974), 9.

    Google Scholar 

  7. Ali, S. T. and Emch, G. G.: J. Math. Phys. 15 (1974), 176.

    Google Scholar 

  8. Davies, E. B.: J. Funct. Anal. 6 (1970), 318.

    Google Scholar 

  9. Neumann, H.: Helv. Phys. Acta 45 (1972), 811.

    Google Scholar 

  10. Mackey, G. W.: Proc. Nat. Acad. Sci. (U.S.A.) 35 (1949), 537.

    Google Scholar 

  11. Takesaki, M.: Acta Math. 119 (1967), 273.

    Google Scholar 

  12. Naimark, M. A.: Dokl. Acad. Sci. U.S.S.R. 41 (1943), 359.

    Google Scholar 

  13. Riesz, F. and Sz.-Nagy, B.: Functional Analysis: Appendix, Frederick Ungar, New York, 1960.

    Google Scholar 

  14. Scutaru, H.: Lett. Math. Phys. 2, (1977), 101.

    Google Scholar 

  15. Cattaneo, U.: Comment. Math. Helv. 54 (1979), 629.

    Google Scholar 

  16. Castrigiano, D. P. L. and Henrichs, R. W.: Lett. Math. Phys. 4 (1980), 169.

    Google Scholar 

  17. Ali, S. T.: Lecture Notes in Math. 905 (1982), 207.

    Google Scholar 

  18. Ali, S. T.: Can. Math. Bull. 27 (1984), 390.

    Google Scholar 

  19. Ali, S. T. and Prugovečki, E.: J. Math. Phys. 18 (1977), 219.

    Google Scholar 

  20. Prugovečki, E.: J. Math. Phys. 19 (1978), 2260, 2271.

    Google Scholar 

  21. Castrigiano, D. P. L.: Lett. Math. Phys. 5 (1981), 303.

    Google Scholar 

  22. Ali, S. T.: J. Math. Phys. 21 (1980), 818.

    Google Scholar 

  23. Aronszajn, N.: Proc. Camb. Phil. Soc. 39 (1944), 133.

    Google Scholar 

  24. Aronszajn, N.: Trans. Amer. Math. Soc. 68 (1950), 337.

    Google Scholar 

  25. Cattaneo, U.: J. Math. Phys. 23 (1982), 659.

    Google Scholar 

  26. Ali, S. T.: ‘Harmonic Analysis on Phase Space. I. Reproducing Kernel Hilbert Spaces, POV Measures and Systems of Covariance’, Concordia University preprint.

  27. Ali, S. T.: ‘Extended Harmonic Analysis on Phase Space and Systems of Covariance’, Hadronic J. 8 (1985), (in press).

  28. Yaffe, L. G.: Rev. Mod. Phys. 54 (1982), 407.

    Google Scholar 

  29. Nikolov, B. A. and Trifonov, D. A.: Dubna Preprint, JINR, E2-81-797 (1981).

  30. Glauber, R. J.: Phys. Rev. 131 (1963), 2766.

    Google Scholar 

  31. Barut, A. O. and Girardello, L.: Commun. Math. Phys. 21 (1971), 41.

    Google Scholar 

  32. Perelomov, A. M.: Commun. Math. Phys. 26 (1972), 222.

    Google Scholar 

  33. Dixmier, J.: Les C *-algebres et leurs representations, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  34. Werner, R.: J. Math. Phys. 25 (1984), 1404.

    Google Scholar 

  35. Daubechies, I.: J. Math. Phys. 21 (1980), 1377.

    Google Scholar 

  36. Emch, G. G.: Int. J. Theor. Phys. 20 (1981), 891.

    Google Scholar 

  37. Schroeck, F. E.Jr.: J. Math. Phys. 26 (1985), 306.

    Google Scholar 

  38. Ali, S. T. and Emch, G. G.: ‘Geometric Quantization: Modular Reduction Theory and Coherent States’, Göttingen University preprint.

  39. Giovannini, N. and Piron, C.: Helv. Phys. Acta 52 (1979), 518.

    Google Scholar 

  40. Giovannini, N.: J. Math. Phys. D22 (1981), 2389.

    Google Scholar 

  41. Ali, S. T. and Giovannini, N.: Helv. Phys. Acta 56 (1983), 1140.

    Google Scholar 

  42. Prugovečki, E.: Nuovo Cim. A 89 (1985), 105.

    Google Scholar 

  43. Ali, S. T. and Prugovečki, E.: Acta Appl. Math. 6 (1986), 19–45.

    Google Scholar 

  44. Ali, S. T. and Prugovečki, E.: Acta Appl. Math. 6 (1986), 47–62.

    Google Scholar 

  45. Prugovečki, E.: Quantum Mechanics in Hilbert Space, 2nd edn, Academic Press, New York, 1981.

    Google Scholar 

  46. Busch, P.: J. Phys. A: Math. Gen. 18 (1985), 3351.

    Google Scholar 

  47. Busch, P.: ‘Can Quantum Theoretical Reality be Considered Sharp?’ in P.Mittelstaedt and E. W.Stachow (eds.), Recent Developments in Quantum Logic, Bibliographisches Institut, Mannheim, 1985.

    Google Scholar 

  48. Ali, S. T.: Lecture Notes in Phys. 139, (1981), 49.

    Google Scholar 

  49. Newton, T. D., and Wigner, E. P.: Rev. Mod. Phys. 21 (1949), 400.

    Google Scholar 

  50. Wightman, A. S.: Rev. Mod. Phys. 34 (1964), 845.

    Google Scholar 

  51. Mackey, G. W.: Induced Representations of Groups and Quantum Mechanics, Benjamin, New York, 1968.

    Google Scholar 

  52. Hegerfeldt, G. C.: Phys. Rev. D10 (1974), 3320.

    Google Scholar 

  53. Hegerfeldt, G. C. and Ruijsenaars, S. N. M.: Phys. Rev. D22 (1980), 377.

    Google Scholar 

  54. Hegerfeldt, G. C.: Phys. Rev. Lett. 54 (1985), 2359.

    Google Scholar 

  55. Greenwood, D. and Prugovečki, E.: Found. Phys. 12 (1984), 883.

    Google Scholar 

  56. Prugovečki, E.: J. Math. Phys. 17 (1976), 517, 1673.

    Google Scholar 

  57. Ali, S. T. and Doebner, H. D.: J. Math. Phys. 17, 1105 (1976).

    Google Scholar 

  58. Born, M.: Proc. Roy. Soc. Edinburgh 59 (1939), 219.

    Google Scholar 

  59. Born, M.: Rev. Mod. Phys. 21 (1949), 463.

    Google Scholar 

  60. Busch, P.: Int. J. Theor. Phys. 24 (1985), 63.

    Google Scholar 

  61. Busch, P.: J. Math. Phys. 25 (1984), 1794.

    Google Scholar 

  62. Busch, P. and Lahti, P. J.: Phys. Rev. D29 (1984), 1634.

    Google Scholar 

  63. Schroeck, F. E.Jr.: Found Phys. 12 (1982), 825.

    Google Scholar 

  64. Schroeck, F. E.Jr.: Found Phys. 15 (1985), 279.

    Google Scholar 

  65. Wodkiewicz, K.: Phys. Rev. Lett. 52 (1984), 1064.

    Google Scholar 

  66. Berberian, S. K.: Notes on Spectral Theory, Van Nostrand, Princeton, N.J., 1966.

    Google Scholar 

  67. Takesaki, M.: Theory of Operator Algebras I, Springer, New York, 1979.

    Google Scholar 

  68. Phelps, R. R.: Lectures on Choquet's Theorem, Van Nostrand, Princeton, N.J., 1966.

    Google Scholar 

  69. Menger, K.: in A.Schilpp (ed.) Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Evanston, Illinois, 1949.

    Google Scholar 

  70. Schweizer, B. and Sklar, A.: Probabilistic Metric Spaces, North-Holland, New York, 1983.

    Google Scholar 

  71. Eddington, A. S.: Fundamental Theory, Cambridge University Press, Cambridge, 1953.

    Google Scholar 

  72. Rosen, N.: Ann. Phys. (N.Y.) 19 (1962), 165.

    Google Scholar 

  73. Blokhintsev, D. I.: Sov. J. Particles Nucl. 5 (1975), 243.

    Google Scholar 

  74. Prugovečki, E.: ‘Quantum Geometry and the EPR Gedankenexperiment’, in P. J.Lahti and P.Mittelstaedt (eds), Proceedings of the Symposium on the Foundations of Physics, World Scientific, Singapore, 1985, pp. 525–539.

    Google Scholar 

  75. Nash, C. and Sen, S.: Topology and Geometry for Physicists, Academic Press, London, 1983.

    Google Scholar 

  76. Brooke, J. A. and Prugovečki, E.: Nuovo Cim. A79 (1984), 237.

    Google Scholar 

  77. Brooke, J. A. and Guz, W.: Nuovo Cim. A78 (1983), 221.

    Google Scholar 

  78. Banai, M. and Lukacs, B.: Lett. Nuovo Cim. 36 (1983), 533.

    Google Scholar 

  79. Banai, M.: Int. J. Theor. Phys. 23 (1984), 1043.

    Google Scholar 

  80. Brooke, J. A. and Prugovečki, E.: ‘Geometrization of Quantum Mechanics’, Nuovo Cim. A 89 (1985), 126.

    Google Scholar 

  81. Brooke, J. A. and Guz, W.: Nuovo Cim. A 78 (1983), 17.

    Google Scholar 

  82. Prugovečki, E.: ‘General Relativistic and Gauge Invariant Quantum Geometries’, University of Toronto preprint.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the Natural Science and Engineering Research Council of Canada (NSERC) grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S.T., Prugovečki, E. Mathematical problems of stochastic quantum mechanics: Harmonic analysis on phase space and quantum geometry. Acta Appl Math 6, 1–18 (1986). https://doi.org/10.1007/BF00046932

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046932

AMS (MOS) subject classifications (1980)

Key words

Navigation