Skip to main content
Log in

The kinetics of subcritical crack growth under sustained loading

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The kinetics of subcritical crack growth under sustained loading for an AISI 4340 steel tempered at 400°F in distilled water were determined. Crack growth experiments were carried out over a range of temperatures from 10–75°C, using the crack tip stress intensity factor, K, to characterize the mechanical driving force. Results show that crack growth in distilled water is controlled by a thermally activated process with apparent activation energies that depend on K. Crack growth occurred only above a threshold K level with growth rates showing a strong K dependence at lower values of K and attaining constant, rate limiting values at higher K levels. The rate limiting velocities correspond to an apparent activation energy of 8000±1000 cal/mole, in essential agreement with values reported for crack growth in similar steels. This apparent activation energy corresponds to that for hydrogen permeation in AISI 4340 steel and lends further support to the concept that the rate limiting process for crack growth in high strength steels in water is that of hydrogen permeation into the crack-tip region. Because of the differences in the apparent activation energies for crack growth in water and in gaseous hydrogen, the rate limiting step in the permeation process still needs to be defined.

Résumé

On a détermine la cinétique de la croissance subcritique des fissures sous charge constante dans l'eau distillée pour un acier AISI 4340 revenu à 400°F.

Les essais de propagation de fissure ont été exécutés dans une gamme de températures comprise entre 10 et 75°C, les efforts étant caractérisés par le facteur K d'intensité des contraintes à l'extrémité de la fissure.

Les résultats démontrent que la croissance de la fissure dans l'eau distillée est régie par un processus d'activation thermique, dont les énergies d'activation apparente dépendent de K. La propagation de la fissure ne se produit que lorsque K dépasse un certain seuil; les vitesses de propagation dépendent fortement de K à ses niveaux les moins elevés au-dessus de ce seuil, mais tendent vers une valeur limite constante lorsque K est important. Cette vitesse limite correspond à une énergie d'activation apparente de 8000±1000 cal/môle, ce qui est en accord avec les valeurs que l'on a trouvées pour la propagation des fissures dans des aciers similaires.

Cette énergie d'activation correspond à celle qui est nécessaire pour la diffusion de l'hydrogène dans l'acier AISI 4340. Ceci constitue un argument supplémentaire en faveur du concept suivant lequel la vitesse de croissance des fissures dans les aciers à haute résistance en présence d'eau est limitée par un processus de diffusion de l'hydrogène dans la région de l'extrémité de la fissure.

Zusammenfassung

Die Kinetik der subkritischen Rißausbreitung bei konstanter Belastung in distilliertem Wasser wird für ein Stahl AISI 4340, der auf 400°F Wärme behandelt wurde, aufgestellt.

Die Rißausbreitungsversuche wurden, unter Verwendung des Spannungsintensitätfaktors K an der Spitze des Risses zur Charakterisierung der mechanischen Fortbewegungskraft, in einem Temperaturbereich von 10 bis 75°C ausgeführt.

Die Ergebnisse zeigen daß die Ausbreitung des Risses im distillierten Wasser durch ein thermisches Beschleunigungsverfahren regiert wird, wo die Beschleunigungsenergie von K abhängt. Rißausbreitung kann nur über einem gewissen Niveau der Höhe von K zu stande kommen mit Rißausbreitungsgeschwindigkeiten die stark von K abhängen für die Werte die nahe über diesem Niveau liegen, die aber einen Konstanten Oberwert anstreben für höhere Werte von K.

Diesem Oberwert der Geschwindigkeit gehört eine Beschleunigungsenergie von 8000±1000 Kal/mole an was mit den Werten die man für ähnliche Stähle gefunden hat übereinstimmt.

Diese Beschleunigungsenergie ist die gleiche wie die, die zur Diffusion von Wasserstoff in Stahl AISI 4340 nötig ist. Dies ist ein zusätzliches Argument zur Annahme daß die Rißausbreitungsgeschwindigkeit für Stähle, mit hoher Bruchlast, im Wasser durch ein Diffusionsverfahren vom Wasserstoff in der Gegend der Spitze des Risses begrenzt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. J. Petch and P. Stables, Delayed Fracture of Metals under Static Load, Nature, 169 (1952) 842–843

    Google Scholar 

  2. C. Edeleanu, Transgranular Stress Corrosion in Chromium-Nickel Stainless Steels, Journal of the Iron and Steel Institute, 173, 1 (1953) 140–146.

    Google Scholar 

  3. H. H. Johnson, J. G. Morlet and A. R. Troiano, Hydrogen Crack Initiation, and Delayed Failure in Steel, Transactions of the Metallurgical Society of AIME, 212 (1958) 528–536.

    Google Scholar 

  4. M. E. Shank, C. E. Spaeth, V. W. Cooke and J. E. Coyne, Solid-Fuel Rocket Chambers for Operation at 240,000 psi and Above, Metal Progress, Part I, 76 5 (1959) 74–81. Part II, 76, 5 (1959) 84–93.

    Google Scholar 

  5. E. A. Steigerwald, F. W. Schaller and A. R. Troiano, Discontinuous Crack Growth in Hydrogenerated Steel, Trans. of the Metallurgical Society of AIME, 215 (1959) 1048–1052.

    Google Scholar 

  6. E. H. Phelps and A. W. Loginow, Stress Corrosion of Steels for Aircrart and Missiles, Corrosion, 16, 264 (1960) 325t-335t.

    Google Scholar 

  7. H. Bernstein and J. A. Kies, Crack Growth During Static Tests of Rocket Motor Cases, Metal Progress, 78, 2 (1960) 79–82.

    Google Scholar 

  8. E. A. Steigerwald, Delayed Failure of High-Strength Steel in Liquid Environments, Proceedings ASTM, 60 (1960) 750–760.

    Google Scholar 

  9. H. L. Logan, M. L. McBee, O. J. Kaham, Evidence for an Electrochemical-Mechanical Stress Corrosion Fracture in a Stainless Steel, Corrosion Science, 5, 10 (1965) 729–730.

    Google Scholar 

  10. R. Newcomer, H. C. Tourkakis and H. C. Turner, Elevated Temperature Stress Corrosion Resistance of Titanium Alloys, Corrosion, 21, 10 (1965) 307–315.

    Google Scholar 

  11. G. L. Hanna, A. R. Troiano and E. A. Steigerwald, A Mechanism for the Embrittlement of High-Strength Steels by Aqueous Environments, Transactions of the ASM, 57 (1964) 658–671.

    Google Scholar 

  12. G. G. Hancock and H. H. Johnson, Hydrogen, Oxygen and Sub-critical Crack Growth in a High-Strength Steel, Trans. AIME, 236, 4 (1966) 513–516.

    Google Scholar 

  13. B. F. Brown and C. D. Beachem, A Study of the Stress Factor in Corrosion Cracking by Use of the Pre-cracked Cantilever Beam Specimen. Corrosion Science, 5, 11 (1965) 745–750.

    Google Scholar 

  14. J. J. Mulherin, Stress-Corrosion Susceptibility of High-Strength Steel, in Relation to Fracture Toughness, Trans. of the ASME, Series D, 88 (1966) 777–782.

    Google Scholar 

  15. H. H. Johnson and A. M. Willner, Moisture and Stable Crack Growth in a High Strength Steel, Applied Materials Research, 4 (1965) 34–40.

    Google Scholar 

  16. J. P. Gallagher and G. M. Sinclair, Environmentally Assisted Fatigue Crack Growth Rates in SAE 4340 Steel, Trans. of the ASME. Journal of Basic Engineering, Series D, 91 (1969) 598–602.

    Google Scholar 

  17. H. R. Smith, D. E. Piper and F. K. Downey, A Study of Stress-Corrosion Cracking by Wedge-Force Loading, Engineering Fracture Mechanics, 1 (1969) 123–128.

    Google Scholar 

  18. W. A.Van Der Sluys, Mechanisms of Environment Induced Sub-critical Flaw Growth in AISI 4340 Steel, Engineering Fracture Mechanics, 1 (1969) 447–462.

    Google Scholar 

  19. J. C. Scully, Fracture Mechanics and Stress Corrosion, Materials and Metals, 3 (1969) (5) 174–175.

    Google Scholar 

  20. G. M. Ugiansky, L. P. Skolnick, J. Kruger and S. W. Steifel, Rate-controlling Step in Stress Corrosion Cracking, Nature, 218 (1968) 1156.

    Google Scholar 

  21. G. R. Irwin, Fracture; Handbuch der Physik, Vol. VI, Springer, (1958).

  22. C. S. Carter, The Effect of Silicon on the Stress-Corrosion Resistance of Low-Alloy High-Strength Steels, Corrosion, 25, 10 (1969) 423–431.

    Google Scholar 

  23. S. Mostovoy, H. R. Smith, R. G. Lingwall and E. J. Ripling, A Note on Stress Corrosion Cracking Rates, Materials Research Laboratory, Inc.

  24. R. P. Wei, Some Aspects of Environment-Enhanced Fatigue-Crack Growth, Engineering Fracture Mechanics, 1 (1970) 633–651.

    Google Scholar 

  25. W. F. Brown, Jr. and J. E. Srawley, Plane Strain Crack Toughness Testing of High-Strength Metallic Materials, ASTM, STP 410, American Society for Testing and Materials (1966).

  26. Isida, Crack Tip Stress Intensity Factors for the Tension of an Eccentrically Cracked Strip, Lehigh University, Department of Mechanics Report. 1965.

  27. J. E. Srawley and B. Gross, Stress Intensity Factors for Crackline-Loaded Edge-Crack Specimens, NASA Technical Note D-3820, (1967).

  28. J. E. Srawley and W. F. Brown, Jr., Fracture Toughness Test Methods, Fracture Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing and Materials (1965) 133.

  29. F. J. Norton, Diffusion of Hydrogen from Water Through Steel, Journal of Applied Physics, 11 (1940) 262–267.

    Google Scholar 

  30. F. W. Johnson and M. H. Hill, Transactions of the Metallurgical Society of AIME, 218 (1960) 1104.

    Google Scholar 

  31. H. L. Eschbach, F. Gross and S Schlien, Permeability Measurements with Gaseous Hydrogen for Various Steels, Vacuum, 13, 543–547.

  32. J. D. Hobson, The Diffusion of Hydrogen in Steel at Temperatures of-78°C to 200°C, Journal of the Iron and Steel Institute, 189 II (1958) 315–321.

    Google Scholar 

  33. R. L. Frank and D. E. Swets, Hydrogen Permeation Through Steel During Abrasion, Journal of Applied Physics, 28 (1957) 380.

    Google Scholar 

  34. R. Hewitt, Iron and Steel Institute, Special Report 73.

  35. W. Beck, J. O'M. Bockris, J. McBreen and L. Nanis, Hydrogen Permeation in Metals as a Function of Stress, Temperature, and Dissolved Hydrogen Concentration, Royal Society of London, Proceedings, 290, 1421, (1966) 220–235.

    Google Scholar 

  36. D. I. Phalen and D. A. Vaughan, The Role of Surface Stress on Hydrogen Absorption by 4340 Steel, Corrosion, 24, 8 (1968) 243–246.

    Google Scholar 

  37. D. P. Williams and H. G. Nelson, Embrittlement of 4130 Steel by Low-Pressure Gaseous Hydrogen, Metallurgical Transactions, 1 (1970) 63–68.

    Google Scholar 

  38. H. H. Johnson, Calibrating the Electric Potential Method for Studying Slow Crack Growth, Materials Research and Standards, 5 (1965) 422.

    Google Scholar 

  39. Che-Yu Li and R. P. Wei, Calibrating the Electrical Potential Method for Studying Slow Crack Growth, Materials Research and Standards, 6, 8 (1966) 392–394.

    Google Scholar 

  40. G. A. Miller, S. J. Hudak and R. P. Wei. The Influence of Loading Variables on Environment Enhanced Fatigue Crack Growth in High Strength Steels, Submitted to the Journal of Materials, ASTM (1972).

  41. Unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landes, J.D., Wei, R.P. The kinetics of subcritical crack growth under sustained loading. Int J Fract 9, 277–293 (1973). https://doi.org/10.1007/BF00049196

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049196

Keywords

Navigation