Skip to main content
Log in

Secular perturbation theory and computation of asteroid proper elements

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A new theory for the calculation of proper elements, taking into account terms of degree four in the eccentricities and inclinations, and also terms of order two in the mass of Jupiter, has been derived and programmed in a self contained code. It has many advantages with respect to the previous ones. Being fully analytical, it defines an explicit algorithm applicable to any chosen set of orbits. Unlike first order theories, it takes into account the effect of shallow resonances upon the secular frequencies; this effect is quite substantial, e.g. for Themis. Short periodic effects are corrected for by a rigorous procedure. Unlike linear theories, it accounts for the effects of higher degree terms and can thus be applied to asteroids with low to moderate eccentricity and inclination; secular resonances resulting from the combination of up to four secular frequencies can be accounted for. The new theory is self checking : the proper elements being computed with an iterative algorithm, the behaviour of the iteration can be used to define a quality code. The amount of computation required for a single set of osculating elements, although not negligible, is such that the method can be systematically applied on long lists of osculating orbital elements, taken either from catalogues of observed objects or from the output of orbit computations. As a result, this theory has been used to derive proper elements for 4100 numbered asteroids, and to test the accuracy by means of numerical integrations. These results are discussed both from a quantitative point of view, to derive an a posteriori accuracy of the proper elements sets, and from a qualitative one, by comparison with the higher degree secular resonance theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V.I.: 1963, “Small denominators and problems of stability of motion in classical and celestial mechanics” Russian Mathematical Surveys 18, 85.

    Google Scholar 

  • Birkhoff, G.D.: 1927, ‘Dynamical systems’, Am. Math. Soc., Provi dence.

    Google Scholar 

  • Bretagnon, P.: 1974, “Termes à longues périodes dans le système solaire” Astron. Astrophys. 30, 141–154.

    Google Scholar 

  • Brouwer, D.: 1951, “Secular variations of the orbital elements of the principal planets” Astron. J. 56 9–32.

    Google Scholar 

  • Brouwer, D. and Clemence, G.M. : 1961, ‘Methods of Celestial Mechanics’, Academic Press.

  • Brouwer, D. and Van Woerkom, A.J.J.: 1950, “The secular variations of the orbital elements of the principal planets” Astron. Papers U.S. Naval Obs. Naut. Almanac Off. 13, 81–107.

    Google Scholar 

  • Carpino, M., Milani, A. and Nobili, A.M.: 1987, “Long-term numerical integrations and synthetic theories for the motion of the outer planetsAstron. Astrophys. 181, 182–194.

    Google Scholar 

  • Deprit, A.: 1969, “Canonical transformations depending on a small parameter” Celestial Mechanics 1, 12–30.

    Google Scholar 

  • Duriez, L. : 1979, “Approche dune théorie générale planétaire en variables elliptiques héliocentriques”, Ph.D. Thesis, Univ. Lille.

  • Everhart, : 1984, In “Dynamics of comets” (Carusi, A. and Valsecchi, G. eds)

  • Farinella, P., Carpino, M., Froeschlé, Ch., Froeschlé, Cl., Gonczi, R., Knežević, Z. and Zappalà, V.: 1989, Astron. Astroph., 217, 298.

    Google Scholar 

  • Froeschlé, Ch. and Scholl, H.: 1986, “The effects of the secular resonances νl6 and ν5 on asteroidal orbits” Astron. Astrophys. 170, 138–144.

    Google Scholar 

  • Froeschlé, Ch. and Scholl, H.: 1987, “Orbital evolution of asteroids near the secular resonance ν6Astron. Astrophys. 179, 294–303.

    Google Scholar 

  • Hirayama, K.: 1918, “Groups of asteroids probably of common origin” Astron. J. 31, 185–188.

    Google Scholar 

  • Hori, G.: 1966, “Theory of General Perturbations with Unspecified Canonical Variables” Publ. Astron. Soc. Japan 18, 287–296.

    Google Scholar 

  • Knežević, Z.: 1988, “Asteroid mean orbital elements”, Bull. Astron. Obs. Belgrade 139, 1–6.

    Google Scholar 

  • Knežević, Z.: 1989, “Asteroid long-periodic perturbations : the second order Hamiltonian” Celestial Mechanics, 46, 147–158.

    Google Scholar 

  • Knežević, Z. : 1990, “Asteroid long-periodic perturbations : the proper elements derivation and accuracy” Astron. Astrophys., in press.

  • Knežević, Z. and Ćatović, Z. : 1990, “On the accuracy of the Laplace and Leverrier coefficients” Bull. Serb. Acad. Sci., submitted.

  • Knežević, Z. and Milani, A. : 1989, “Asteroid proper elements from an analytical second order theory” in ‘Asteroids II’ (R.P. Binzel, T. Gehrels and M.S. Matthews, Eds.), Univ. Arizona Press, pp. 1073–1089.

  • Kozai, Y. : 1979, “The dynamical evolution of the Hirayama family”In : ‘Asteroids’ (T. Gehrels, Ed.), Univ. Arizona Press, pp. 334–358.

  • Laskar, J : 1984, “Thórie générale planetaire : élements orbitaux des planètes sur un million d'années” Ph.D. Thesis., Obs. Paris.

  • Laskar, J.: 1985, “Accurate methods in general planetary theory” Astron. Astrophys. 144, 133–146.

    Google Scholar 

  • Laskar, J.: 1988, “Secular evolution of the solar system over 10 million years” Astron. Astrophys. 198, 341–362.

    Google Scholar 

  • Laskar, J.: 1989, “A numerical experiment on the chaotic behaviour of the solar system” nature 338, 237–238.

    Google Scholar 

  • LeVerrier, U.-J.: 1855, “Développement de la fonction qui Bert de base au calcul des perturbations des mouvements des planètes”, Ann. Obs. Paris 1, 258–342.

    Google Scholar 

  • Lubbock, C. A.: 1933, The Herschel Chronicle, Canbridge Univ. Press, Cambridge UK

    Google Scholar 

  • Milani, A. : 1988, “Secular perturbations of planetary orbits and their representation as series” In :‘Long-term Dynamical Behaviour of Natural and Artificial N-Body Systems’ (A.E. Roy, Ed.), Kluwer Acad. Publ., pp. 73–108.

  • Milani, A. : 1990, “Perturbation methods in celestial mechanics” In Proceedings of the Goutelas Astronomy School, (C. Froeschlé and D. Benest eds.), in press

  • Milani, A. and Nobili, A.M.: 1988, “Integration error over a very long time span” Celestial Mechanics 43, 1–34.

    Google Scholar 

  • Milani, A., Nobili, A.M. and Carpino, M.: 1987, “Secular variations of the semimajor axes : theory and experiments” Astron. Astrophys. 172, 265–279.

    Google Scholar 

  • Nobili, A.M., Milani, A. and Carpino, M.: 1989, “Fundamental frequencies and small divisors in the orbits of the outer planets” Astron. Asirophys. 210, 313–336.

    Google Scholar 

  • Poincaré, H.: 1892, Methodes Nouvelles de la Mechanique Celeste, Vol. I, Gauthier-Villars, Paris.

    Google Scholar 

  • Poincaré, H.: 1893, Methodes Nouvelles de la Mechanique Celeste, Vol. II, Gauthier-Villars, Paris.

    Google Scholar 

  • Schubart, J.: 1968, “Long-periodic effects in the motion of Hilda-type planets” Astron. J. 73, 99–103.

    Google Scholar 

  • Siegel, C.L.: 1941, “On the integrals of canonical systems” Annals of Mathematics 42, 806–822.

    Google Scholar 

  • Stockwell, J.N. : 1873, “Memoir on the secular variation of the elements of the orbits of the eight principal planets”, Smithsonian Contributions to Knowledge 18, no. 232.

    Google Scholar 

  • Williams, J.G. : 1969, “Secular perturbations in the Solar System” Ph.D. Thesis, Univ. California Los Angeles.

  • Williams, J.G. : 1971, “Proper elements, families, and belt boundaries” In Physical Studies of Minor Planets (T. Gehrels ed.), NASA SP-267, pp. 177–181.

  • Williams, J.G. : 1979, “Proper elements and family membership of the asteroids” In: ‘Asteroids’ (T. Gehrels, Ed.), Univ. Arizona Press, p. 1040–1063.

  • Williams, J.G. and Benson, G.S., J.: 1971, “Resonances in the Neptune-Pluto system” Astron. J. 76, 167–177.

    Google Scholar 

  • Williams, J.G. and Faulkner, J.: 1981, “The position of secular resonance surfaces” Icarus 46, 390–399.

    Google Scholar 

  • Yuasa, M.: 1973, “Theory of secular perturbations of asteroids including terms of higher order and higher degree” Publ. Astron. Soc. Japan 25, 399–445.

    Google Scholar 

  • Zappala, V., Cellino, A., Farinella, P. and Knežević, Z. : 1990, “Asteroid families I: identification by hierarchical clustering and reliability assessment”, Astron. J., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milani, A., Knežević, Z. Secular perturbation theory and computation of asteroid proper elements. Celestial Mech Dyn Astr 49, 347–411 (1990). https://doi.org/10.1007/BF00049444

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049444

Keywords

Navigation