Skip to main content
Log in

Cyclic deformation and fatigue behaviour of α-iron mono-and polycrystals

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The reported studies are based on a series of cyclic deformation tests that were conducted at room temperature on decarburized high-purity α-iron specimens in mono-and polycrystalline form. The experimental data cover plastic strain ranges Δε pl in the regime 10−4 ≲ Δε pl ≲ 10−2 and variations in cyclic plastic strain rates έ pl between ∼10-5 and ∼10−2 s−1. In the case of single crystals, the effect of solute carbon (∼30 wt. ppm) was investigated as well. The mechanical data were supplemented by detailed studies of the dislocation arrangements by transmission electron microscopy and of the surface patterns by scanning electron and optical microscopy.

Detailed accounts are given of the following topics: cyclic hardening and saturation, dislocation mechanisms, shape changes due to asymmetric slip of serew dislocations, cyclic stress-strain response and fatigue crack initiation.

Under conventional conditions of “high” έ pl (≲10−4 s−1) the fatigue behaviour of α-iron at room temperature reflects the low mobility of the screw dislocations which is characteristic of the lowttemperature mode of deformation of body-centred cubic (b.c.c.) metals. As a consequence the behaviour exhibits significant differences with respect to that of fatigued face-centred cubic (f.c.c.) metals such as: strongly impeded dislocation multiplication below Δε pl ∼ 5 × 10−4, appreciable secondary slip at higher Δε pl leading to a cell structure (persistent slip bands do not form), shape changes due to asymmetric slip of screw dislocations and a relatively high effective stress level.

The reduction of έ pl and the presence of solute carbon atoms modify this behaviour significantly, making it more similar to that of f.c.c. metals. In all cases it was found that only the athermal component of the peak (saturation) stress but not the latter itself represents a suitable measure of the properties of the dislocation substructure.

On the basis of the cyclic deformation behaviour and of observations of trans-and intergranular fatigue crack initiation it was concluded that the fatigue limit of α-iron is an intrinsic property of the b.c.c. structure whose characteristics, however, are affected sensitively by interstitial impurity content and by the strain rate of the fatigue test.

Résumé

Les résultats rapportés dans le mémoire sont basés sur une série d'essais de déformation cyclique qui ont été conduits à température ambiante sur des échantillons de fer α décarburés à haute pureté sous une forme mono- et polycristalline. Les données expérimentales couvrent les amplitudes de déformation plastique Δε pl correspondant à 10−4 ≲ Δε pl ≲ 10−2 ainsi que des variations dans la vitesse de déformation plastique comprises entre 10-5 et 10-2 s-1. Dans le cas de cristaux simples, on a également étudié les effects du C en solution (∼30 ppm). Les données mécaniques ont été complétées par des études détaillées des arrangements des dislocations, en utilisant la microscopie électronique à transmission, ainsi que les aspects des surfaces en utilisant la microscopie optique et la microscopie électronique à balayage.

On a traité dans le détail les sujets suivants: accroissement cyclique et saturation, mécanisme de dislocation, modification de forme associée à des glissements assymétriques de dislocation vis, réponse cyclique contrainte/dilatation et amorcage de la fissure de fatigue.

Sous les conditions conventionnelles de haute vitesse de déformation plastique (supérieure à 10-4 s-1) le comportement en fatigue du fer α à la température ambiante rend compte de la faible mobilité des dislocations vis, ce qui est caractéristique d'un mode de déformation à basse température des métaux cubiques centrés. En conséquence, le comportement fait état de différences significatives par rapport aux métaux cubiques faces centrés soumis à fatigue tels que: une intense multiplication des dislocations en-dessous Δε pl ∼ 5 × 10−4, un glissement secondaire appréciable pour des valeurs de Δε pl supérieures qui conduit à une structure en cellules (c.à.d que des bandes de glissement persistantes ne se forment point), des modifications de forme dues à des glissements assymétriques de dislocation vis, ainsi qu'un niveau de contrainte effective relativement élevé.

La réduction de la vitesse de déformation plastique et la presence d'atomes de C en solution modifient ce comportement de manière significative, et le rapprochent davantage de celui des métaux cubiques centrés. Dans tous les cas, on a prouvé que seule la composante athermique de la contrainte de saturation, à défaut de cette dernière, représente une mesure appropriée des propriétés des substructures de dislocation.

Sur base du comportement à la déformation cyclique et des observations d'amorcage de fissure de fatigue trans-et intergranulaire, on a conclu que la limite de fatigue du fer α est une propriété intrinsèque d'une structure cubique centrée dont les caractéristiques toutefois, se trouvent être sensiblement affectées par la teneur en impuretés intersticielles et par la vitesse de déformation de l'essai de fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Grosskreutz and H. Mughrabi, in Constitutive Equations in Plasticity, edited by A.S. Argon, MIT Press, Cambridge, Mass. (1975) 251–326.

    Google Scholar 

  2. P.B. Hirsch, in Proceedings of International Conference on the Strength of Metals and Alloys, Supplement to the Transactions of the Japan Institute of Metals 9 (1968) XXX-XXXIX.

  3. J.W. Christian, in Proceedings of Second International Conference on the Strength of Metals and Alloys, Asilomar, American Society for Metals, Metals Park, Ohio (1970) 31–70.

  4. B. Šesták and A. Seeger, Zeitschrift für Metallkunde 69 (1978) 195–202, 355–363, 425–432.

    Google Scholar 

  5. A. Seeger, The Philosophical Magazine, Series 7, 45 (1954) 771–773.

    Google Scholar 

  6. B. Šestàk and A. Seeger, physica status solidi (b) 43 (1971) 433–444.

    Google Scholar 

  7. H. Mughrabi and Ch. Wüthrich. The Philosophical Magazine 33 (1976) 963–984.

    Google Scholar 

  8. H. Mughrabi, K. Herz and F. Ackermann, in Proceedings of Fourth International Conference on the Strength of Metals and Alloys, Nancy, Vol. 3 (1976) 1244–1248.

  9. H. Mughrabi, F. Ackermann and K. Herz, in Fatigue Mechanisms, Proceedings,of an ASTM-NBS-NSF Symposium, edited by J.T. Fong, American Society for Testing and Materials, Philadelphia ASTM-STP 675 (1979) 69–105.

    Google Scholar 

  10. W.A. Wood and W.P. Mason, Journal of Applied Physics 39 (1968) 4514–4516.

    Google Scholar 

  11. C.F. Burdett, The Philosophical Magazine 24 (1976) 1459–1464.

    Google Scholar 

  12. W.P. Mason, Engineering Fracture Mechanics 8 (1976) 89–101.

    Google Scholar 

  13. T. Takamura and K. Ishii, Proceedings of Fifth International Conference on Internal Friction and Ultrasonic Attenuation in Solids, Aachen, edited by D. Lenz and K. Lücke, Springer Verlag, Berlin-Heidelberg-New York, Volume II, (1975) 478–485.

    Google Scholar 

  14. H. Müllner, P. Bajons, H. Kousek and B. Weiss, Proceedings of Fifth International Conference on Internal Friction and Ultrasonic Attenuation in Solids, Aachen, edited by D. Lenz and K. Lücke, Springer Verlag, Berlin-Heidelberg-New York, Volume II, (1975) 76–383.

    Google Scholar 

  15. H. Mughrabi, Zeitschrift für Metallkunde 66 (1975) 719–724.

    Google Scholar 

  16. H. Mughrabi, K. Herz and X. Stark, Acta Metallurgica 24 (1976) 659–668.

    Google Scholar 

  17. H. Mughrabi, R. Kütterer, K. Lubitz and H. Kronmüller, physica status solidi (a) 28 (1976) 261–270.

    Google Scholar 

  18. J.T. Michalak, Acta Metallurgica 13 (1965) 213–222.

    Google Scholar 

  19. K. Herz, H. Mughrabi and M. Wilkens, Arbeitsbericht MPI 77/P3 (in English) des Max-Planck-Instituts für Metallforschung, Institut für Physik, Stuttgart, Federal Republic of Germany (1977).

    Google Scholar 

  20. K. Herz, Doctorate Thesis, Stuttgart University (1976).

  21. X. Stark, Diplom Thesis, Stuttgart University (1973).

  22. J.R. Hancock and J.C. Grosskreutz, Acta Metallurgica 17 (1969) 77–97.

    Google Scholar 

  23. S. Ikeda, Transactions of the Japan Institute of Metals 20 (1979) 235–243.

    Google Scholar 

  24. F.V. LawrenceJr. and R.C. Jones, Metallurgical Transactions 1 (1970) 367–376.

    Google Scholar 

  25. A. Yoshikawa and M. Okamoto, Supplement to Transactions of the Japan Institute of Metals 9 (1968) 471–475.

    Google Scholar 

  26. S. Ikeda, in Proceedings of 5th International Conference on the Strength of Metals and Alloys, Aachen Vol. 2 (1979) 1157–1162.

  27. J. Krejči and P. Lukáš, physica status solidi (a) 5 (1971) 315–325.

    Google Scholar 

  28. W.A. Wood, W.H. Reimann and K.R. Sargant, Transactions of the Metallurgical Society of AIME 230 (1964) 511–518.

    Google Scholar 

  29. P. Lukáš and M. Klesnil, Czechoslovak Journal of Physics B 14 (1964) 600–607.

    Google Scholar 

  30. P. Lukáš, M. Klesnil and P. Rys, Zeitschrift für Metallkunde 56 (1965) 109–113.

    Google Scholar 

  31. J.T. McGrath and W.J. Bratina, The Philosophical Magazine 12 (1965) 1293–1305.

    Google Scholar 

  32. Y. Bergström, O. Vingsbo and G. Lagerberg, Materials Science and Engineering 5 (1969/70) 153–162.

    Google Scholar 

  33. H. Abdel Raouf, P.P. Benham and A. Plumtre, Canadian Metallurgy Quarterly 30 (1971) 87–95.

    Google Scholar 

  34. O.K. Chopra and C.V.B. Gowda, The Philosophical Magazine 30 (1974) 583–591.

    Google Scholar 

  35. R.P. Wei and A.J. Baker, The Philosophical Magazine 12 (1965) 1005–1020.

    Google Scholar 

  36. H.D. Nine, The Philosophical Magazine 26 (1972) 1409–1418.

    Google Scholar 

  37. R. Neumann, Zeitschrift für Metallkunde 66 (1975) 25–32.

    Google Scholar 

  38. M. Anglada and F. Guiu, in Proceedings of 5th International Conference on the Strength of Metals and Alloys, Aachen Vol. 2 (1979) 1237–1241.

  39. F. Ackermann, Max-Planck-Institut für Metallforschung (1978/79), unpublished work.

  40. H.D. Solomon and C.J. McMahonJr. in Work-Hardening, edited by J.P. Hirth and J. Weertmann Gordon and Breach, New York (1968) 311–332.

    Google Scholar 

  41. A. Seeger and B. Šesták, Scripta Metallurgica 5 (1971) 875–882.

    Google Scholar 

  42. H. Mughrabi, Scripta Metallurgica 13 (1979) 479–484.

    Google Scholar 

  43. H. Mughrabi, in Proceedings of Fifth International Conference on the Strength of Metals and Alloys, Aachen (1979) edited by P. Haasen, V. Gerold and G. Kostorz, Pergamon Press, Oxford and New York Vol. 3 (1980) 1615–1638.

    Google Scholar 

  44. H. Abdel Raouf and A. Plumtree, Metallurgical Transactions 2 (1971) 1863–1867.

    Google Scholar 

  45. H. Abdel Raouf, A. Plumtree and T.H. Topper, in Cyclic Stress-Strain Behaviour-Analysis, Experimentation and Failure Prediction, ASTM STP 519, American Society for Testing and Materials (1973) 28–57.

  46. H.F. Wachob and H.H. Johnson, Metallurgical Transactions 10A (1979) 305–310.

    Google Scholar 

  47. A.T. Winter, The Philosophical Magazine 30 (1974) 719–738.

    Google Scholar 

  48. P.J. Woods, The Philosophical Magazine 28 (1973) 155–191.

    Google Scholar 

  49. H. Mughrabi, Materials Science and Engineering 33 (1978) 207–223.

    Google Scholar 

  50. M. Doner, J.C. Diprimio and E.I. Salkovitz, Acta Metallurgica 21 (1973) 1547–1559.

    Google Scholar 

  51. M. Hempel, A. Kochendörfer and E. Hillnhagen, Archiv für das Eisenhüttenwesen 28 (1957) 433–444.

    Google Scholar 

  52. D.V. Wilson and J.K. Tromans, Acta Metallurgica 18 (1970) 1197–1208.

    Google Scholar 

  53. C.E. Feltner and C. Laird, Transactions of the Metallurgical Society of AIME 245 (1969) 1372–1373.

    Google Scholar 

  54. H. Abdel Raouf and A. Plumtree, Metallurgical Transactions 2 (1970) 1251–1254.

    Google Scholar 

  55. P. Lukáš and M. Klesnil, Materials Science and Engineering 11 (1973) 345–356.

    Google Scholar 

  56. C.S. Smith and L. Guttman, Transactions AIME 197 (1953) 81–87, Journal of Metals (January 1953).

    Google Scholar 

  57. D.J. Abson and J.J. Jonas, Metal Science Journal 4 (1970) 24–28.

    Google Scholar 

  58. M. Hempel, in Fracture, edited by B.L. Averbach, D.K. Felbeck, G.T. Hahn and D.A. Thomas, Technology Press MTT and John Wiley & Sons, Inc., New York (1959) 376–411.

    Google Scholar 

  59. H.D. Nine, Journal of Applied Physics 44 (1973) 4875–4881.

    Google Scholar 

  60. M. Hempel, A. Kochendörfer and E. Hillnhagen, Archiv für das Eisenhüttenwesen 28 (1957) 417–422.

    Google Scholar 

  61. H.A. Lipsitt and G.T. Horne, Proceedings of the International Conference on Fatigue of Metals, The Institution of Mechanical Engineers and The American Society of Mechanical Engineers (1956) 513–519.

  62. M. Saletore and R. Taggart, Materials Science and Engineering 36 (1978) 259–270.

    Google Scholar 

  63. V.S. Ivanova, V.M. Goritskiy, L.G. Orlov, nd V.F. Terent'yev, Fizika metallov i metallovedenia 34 (1972) 456–463.

    Google Scholar 

  64. V.F. Terent'yev, I.S. Kogan and L.G. Orlov, Fizika metallov i metallovedenia 40 (1975) 199–202.

    Google Scholar 

  65. R.C. Boettner and A.J. McEvilyJr., Acta Metallurgica 13 (1965) 937–946.

    Google Scholar 

  66. D.J. Lloyd and A.P. Greenough, Metal Science Journal 4 (1970) 180–183.

    Google Scholar 

  67. J. Awatani, K. Katagiri and A. Koreeda, Bulletin of the Japan Society of Mechanical Engineers 12 (1969) 1320–1328.

    Google Scholar 

  68. D.I. Golland and P.L. James, Acta Metallurgica 15 (1967) 1889–1894.

    Google Scholar 

  69. D.I. Golland and P.L. James, Metal Science Journal 4 (1970) 113–118.

    Google Scholar 

  70. H. Nisitani and K. Takao, in proceedings of the 1971 International Conference on Mechanical Behaviour of Materials, The Society of Materials Science, Japan, Vol. II (1972) 153–164.

  71. K. Katagiri, J. Awatani, A. Omura, K. Koyanagi and T. Shiraishi, in Fatigue Mechanisms, Proceedings of an ASTM-NBS-NSF symposium, edited by J.T. Fong, American Society for Testing and Materials, Philadelphia (1979) 106–128.

    Google Scholar 

  72. C. Laird and D.J. Duquette, in Corrosion Fatigue, NACE-2, edited by A.J. McEvily and R.W. Staehle, National Association of Corrosion Engineers, Houston (1971) 88–117.

    Google Scholar 

  73. P. Beardmore and P.H. Thornton, Acta Metallurgica 18 (1970) 109–115.

    Google Scholar 

  74. H. Mughrabi, Proceedings of NATO Advanced Study Institute on Surface Effects in Crystal Plasticity, edited by R.M. Latanision and J.T. Fourie, Noordhoff, Leyden (1977) 479–485.

    Google Scholar 

  75. T. Magnin and J.H. Driver, Materials Science and Engineering 39 (1979) 175–185.

    Google Scholar 

  76. A. Wöhler, cf. abstracted account in Engineering (London) 11 (1871) 199–200, 221, 244, 261, 299–300, 327, 349–350, 397, 439–441.

    Google Scholar 

  77. H.A. Lipsitt and G.T. Horne, American Society for Testing Materials, Proceedings 57 (1957) 587–599.

    Google Scholar 

  78. G. Oates and D.V. Wilson, Acta Metallurgica 12 (1964) 21–33.

    Google Scholar 

  79. P.O. Kettunen, Journal of the Iron and Steel Institute 202 (1964) 209–215.

    Google Scholar 

  80. M. Klesnil, Metal Treatment and Drop Forging 32 (1965) 55–63.

    Google Scholar 

  81. J.T. McGrath, W.J. Bratina and A. Plumtree, in Quantitative Relation Between Properties and Microstructure, edited by D.G. Brandon and A. Rosen, Israel University Press, Jerusalem (1969) 391–397.

    Google Scholar 

  82. A. Ferro and G. Montalenti, The Philosophical Magazine 10 (1964) 1043–1052.

    Google Scholar 

  83. A. Ferro, P. Mazzetti and G. Montalenti, The Philosophical Magazine 12 (1965) 867–875.

    Google Scholar 

  84. A.M. Adair and H.A. Lipsitt, Transactions of the Metallurgical Society of AIME 236 (1966) 1235–1237.

    Google Scholar 

  85. P. Lukáš, M. Klesnil and J. Polák, Materials Science and Engineering 15 (1974) 239–245.

    Google Scholar 

  86. C. Laird, Materials Science and Engineering 22 (1976) 231–236.

    Google Scholar 

  87. H.J. Gough, 8th Edgar Marburg Lecture, Proceedings of the Thirty-Sixth Annual Meeting, American Society for Testing Materials 33 (1933) 3–114.

    Google Scholar 

  88. U. Dehlinger, Zeitschrift für Metallkunde 44 (1953) 240–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mughrabi, H., Herz, K. & Stark, X. Cyclic deformation and fatigue behaviour of α-iron mono-and polycrystals. Int J Fract 17, 193–220 (1981). https://doi.org/10.1007/BF00053520

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053520

Keywords

Navigation