Skip to main content
Log in

Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Although organic compounds typically constitute a substantial fraction of the fine particulate matter (PM) in the atmosphere, their molecular composition remains poorly characterized. This is largely because atmospheric particles contain a myriad of diverse organic compounds, not all of which extract in a single solvent or elute through a gas chromatograph; therefore, a substantial portion typically remains unanalyzed. Most often the chemical analysis is performed on a fraction that extracts in organic solvents such as benzene, ether or hexane; consequently, information on the molecular composition of the water-soluble fraction is particularly sparse and incomplete.

This paper investigates theoretically the characteristics of the water-soluble fraction by splicing together various strands of information from the literature. We identify specific compounds that are likely to contribute to the water-soluble fraction by juxtaposing observations regarding the extraction characteristics and the molecular composition of atmospheric particulate organics with compound-specific solubility and condensibility for a wide variety of organics. The results show that water-soluble organics, which constitute a substantial fraction of the total organic mass, include C2 to C7 multifunctional compounds (e.g., diacids, polyols, amino acids). The importance of diacids is already recognized; our results provide an impetus for new experiments to establish the atmospheric concentrations and sources of polyols, amino acids and other oxygenated multifunctional compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, M. M. and Prausnitz, J. M., 1994, Modeling the excess Gibbs energy, in S. I. Sandler (ed.), Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker, New York, pp. 1–86.

    Google Scholar 

  • Adamson, A. W., 1976, Physical Chemistry of Surfaces, John Wiley and Sons, New York.

    Google Scholar 

  • Aldrich, 1994, Catalog Handbook of Fine Chemicals. Aldrich Chemical Company, Milwaukee, WI.

    Google Scholar 

  • Allen, D. T., Palen, E. J., Haimov, M. I., Hering, S. V., and Young, J. R., 1994, Fourier transform infrared spectroscopy of aerosol collected in a low pressure impactor (LPI/FTIR): method development and field calibration, Aerosol Sci. Technol. 21, 325–342.

    Google Scholar 

  • Andrews, E. and Larson, S. M., 1993, Effect of surfactant layers on the size changes of aerosol particles as a function of relative humidity, Environ. Sci. Technol. 27, 857–865.

    Google Scholar 

  • Aneja, V. P., 1993, Organic compounds in cloud water and their deposition at a remote continental site, J. Air Waste Manage. Assoc. 43, 1239–1244.

    Google Scholar 

  • Apelblat, A. and Manzurola, E., 1987, Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K, J. Chem. Thermodyn. 19, 317–320.

    Google Scholar 

  • Ashworth, R. A., Howe, G. B., Mullins, M. E., and Rogers, T. N., 1988, Air-water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater. 18, 25–36.

    Google Scholar 

  • Atkinson, R., 1990, Gas-phase tropospheric chemistry of organic compounds: a review, Atmos. Environ. 24A, 1–41.

    Google Scholar 

  • Atkinson, R. and Aschmann, S. M., 1995, Alkoxy radical isomerization products from the gas-phase OH radical-initiated reactions of 2,4-dimethyl-2-pentanol and 3,5-dimethyl-3-hexanol, Environ. Sci. Technol. 29, 528–536.

    Google Scholar 

  • Benkelberg, H.-J., Hamm, S., and Warneck, P., 1995, Henry's law coefficient for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite, J. Atmos. Chem. 20, 17–34.

    Google Scholar 

  • Betterton, E. A., 1991, The partitioning of ketones between the gas and aqueous phases, Atmos. Environ. 25A, 1473–1477.

    Google Scholar 

  • Betterton, E. A. and Hoffmann, M. R., 1988, Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol. 22, 1415–1418.

    Google Scholar 

  • Bone, R., Cullis, P., and Wolfenden, R., 1983, Solvent effects on equilibria of addition of nucleophiles to acetaldehyde and the hydrophilic character of diols, J. Am. Chem. Soc. 105, 1339–1343.

    Google Scholar 

  • Brimblecombe, P., Clegg, S. L., and Khan, I., 1992, Thermodynamic properties of carboxylic acids relevant to their solubility in aqueous solutions, J. Aerosol Sci. 23, S901-S904.

    Google Scholar 

  • Budavari, S., O'Neil, M. J., Smith, A., and Heckelman, P. E., 1989, The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals, Merck & Co., Rahway, NJ.

    Google Scholar 

  • Burrows, H. D., 1992, Studying odd-even effects and solubility behavior using α, ω-dicarboxylic acids, J. Chem. Educ. 69, 69–73.

    Google Scholar 

  • Butler, J. A. V. and Ramchandani, C. N., 1935, The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc. 280, 952–955.

    Google Scholar 

  • Butler, J. A. V., Ramchandani, C. N., and Thomson, D. W., 1935, The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc. 280, 280–285.

    Google Scholar 

  • Cadle, S. H., Groblicki, P. J., and Mulawa, P. A., 1983, Problems in the sampling and analysis of carbon particulate, Atmos. Environ. 17, 593–600.

    Google Scholar 

  • Cadle, S. H. and Groblicki, P. J., 1982, An evaluation of methods for the determination of organic and elemental carbon in particulate samples, in G. T. Wolff and R. L. Klimisch (eds.), Particulate Carbon-Atmospheric Life Cycle, Plenum Press, New York, pp. 89–109.

    Google Scholar 

  • Carlo, M. J., 1971, Thermodynamic quantities of some biochemically important organic acids in aqueous buffered solutions at 25°C. Ph.D. thesis, Department of Chemistry, Texas A&M University, College Station, TX.

  • Carson, P. G., Neubauer, K. R., Johnston, M. V., and Wexler, A. S., 1995, On-line chemical analysis of aerosols by rapid single-particle mass spectrometry, J. Aerosol Sci. 26, 535–545.

    Google Scholar 

  • Cass, G. R., 1995, Private communication concerning observations discussed in Rogge et al. (1993a).

  • Cholak, J., Schafer, L. J., Yaeger, D. W., and Kehoe, R. A., 1955, The nature of the suspended matter, in N. A. Renzetti (ed.), An Aerometric Survey of the Los Angeles Basin August-November 1954, Air Pollution Foundation, Los Angeles, CA, pp. 201–225.

    Google Scholar 

  • Clegg, S. L., Brimblecombe, P., and Khan, I., 1996, The Henry's law constant of oxalic acid and its partitioning into the atmospheric aerosol, Idojaras (in press).

  • Cohen, S., Marcus, Y., Migron, Y., Dikstein, S., and Shafran, A., 1993, Water sorption, binding and solubility of polyols, J. Chem. Soc. Faraday Trans. 89, 3271–3275.

    Google Scholar 

  • Coudert, R., Paris, J., and Cao, A., 1994, Hydrophobic or micellar behavior of 2-butyl and 2-pentyl-2-(hydroxymethyl)-1,3-propaneDiol in water. Volumes and osmotic coefficients, J. Colloid Interface Sci. 163, 94–99.

    Google Scholar 

  • Coudert, R., Hajji, S. M., and Cao, A., 1993, Thermodynamics of micellar systems: volumes, osmotic coefficients, and aggregation numbers of a homologous series of 1,2,3-alkane triols in water, J. Colloid Interface Sci. 155, 173–182.

    Google Scholar 

  • Cronn, D. R., Charlson, R. J., Knights, R. L., Crittenden, A. L., and Appel, B. R., 1977, A survey of the molecular nature of primary and secondary components of particles in urban air by high-resolution mass spectrometry, Atmos. Environ. 11, 929–937.

    Google Scholar 

  • Curme Jr., G. O. and Johnston, F., 1952, Glycols, Reinhold Publ. Corp., New York.

    Google Scholar 

  • Daisey, J. M., Hershman, R. J., and Kneip, T. J., 1982, Ambient levels of particulate organic matter in New York City in winter and summer, Atmos. Environ. 16, 2161–2168.

    Google Scholar 

  • Dean, J. A., 1992, Lange's Handbook of Chemistry, 14th edn, McGraw-Hill, New York.

    Google Scholar 

  • de Kruif, C. G., van Ginkel, C. H. D., and Voogd, J., 1975, Torsion-effusion vapour-pressure measurements of organic compounds, Conf. Inter. Thermo. Chim. August 26–30, Montpellier, France, pp. 11–18.

  • de Wit, H. G. M., Bouwstra, J. A., Blok, J. G., and de Kruif, C. G., 1983, Vapor pressures and lattice energies of oxalic acid, mesotartaric acid, phloroglucinol, myoinositol, and their hydrates, J. Chem. Phys. 78, 1470–1475.

    Google Scholar 

  • Drefahl, A. and Reinhard, M., 1995, Handbook for estimating physico-chemical properties of organic compounds and the companion software package DESOC (Data Evaluation System for Organic Compounds), Stanford University Bookstore, Stanford, CA.

    Google Scholar 

  • Duce, R. A., 1978, Speculations on the budget of particulate and vapor phase non-methane organic carbon in the global troposphere, Pure Applied Geophys. 116, 244–273.

    Google Scholar 

  • Duce, R. A., Mohnen, V. A., Zimmerman, P. R., Grosjean, D., Cautreels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizzari, E. D., and Wallace, G. T., 1983, Organic material in the global troposphere, Rev. Geophys. Space Phys. 21, 921–952.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts Jr., J. N., 1986, Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley and Sons, New York.

    Google Scholar 

  • Fischer, M. and Warneck, P., 1991, The dissociation constant of pyruvic acid: determination by spectrophotometric measurements, Bunsenges. Phys. Chem. 95, 523–527.

    Google Scholar 

  • Franzblau, E., Burton, C. S., and Hidy, G. M., 1984, Aerosol particle formation from ozone-terminal olefin reactions, Aerosol Sci. Technol. 3, 167–176.

    Google Scholar 

  • Fredenslund, A. and Sorensen, J. M., 1994, Group contribution estimation methods, in S. I. Sandler (ed.), Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker, New York, pp. 287–361.

    Google Scholar 

  • Gill, P. S., Graedel, T. E., and Weschler, C. J., 1983, Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes, Rev. Geophys. Space Phys. 22, 903–920.

    Google Scholar 

  • Gmehling, J., Onken, U., and Rarey-Nies, J. R., 1988, Vapor-liquid Equilibrium Data Collection. Aqueous Systems (Supplement 2). DECHEMA Chemistry Data Series, Vol. 1, Part 1b, DECHEMA (Deutsche Gesellschaft fur Chemisches Apparatewesen, Chemische Technik und Biotechnologie e. V.), Frankfurt, Germany.

    Google Scholar 

  • Gmehling, J., Onken, U., and Arlt, W., 1981, Vapor-liquid Equilibrium Data Collection. Aqueous-Organic Systems (Supplement 1). DECHEMA Chemistry Data Series, Vol. 1, Part 1a, DECHEMA (Deutsche Gesellschaft fur Chemisches Apparatewesen), Frankfurt, Germany.

    Google Scholar 

  • Gmehling, J. and Onken, U., 1977, Vapor-liquid Equilibrium Data Collection. Aqueous-Organic Systems. DECHEMA Chemistry Data Series, Vol. 1, Part 1, DECHEMA (Deutsche Gesellschaft fur Chemisches Apparatewesen), Frankfurt, Germany.

    Google Scholar 

  • Gorzelska, K., Galloway, J. N., Watterson, K., and Keene, W. C., 1992, Water-soluble primary amine compounds in rural continental precipitation, Atmos. Environ. 26A, 1005–1018.

    Google Scholar 

  • Graedel, T. E., Hawkins, D. T. and Claxton, L. D., 1986, Atmospheric Chemical Compounds-Sources, Occurrence, and Bioassay, Academic Press, Orlando, FL.

    Google Scholar 

  • Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., and Rau, J. A., 1986, Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles, Environ. Sci. Technol. 20, 580–589.

    Google Scholar 

  • Grosjean, D., 1992a, In situ organic aerosol formation during a smog episode: estimated production and chemical functionality, Atmos. Environ. 26A, 953–963.

    Google Scholar 

  • Grosjean, D., 1992b, Atmospheric concentrations and temporal variations of C1−C3 carbonyl compounds at two rural sites in central Ontario, Atmos. Environ. 26A, 349–351.

    Google Scholar 

  • Grosjean, D., 1991, Ambient levels of formaldehyde, acetaldehyde, and formic acid in southern California: results of a one-year base-line study, Environ. Sci. Technol. 25, 710–715.

    Google Scholar 

  • Grosjean, D., 1989, Organic acids in southern California air: ambient concentrations, mobile source emissions, in situ formation and removal processes, Environ. Sci. Technol. 23, 1506–1514.

    Google Scholar 

  • Grosjean, D., 1982, Formaldehyde and other carbonyls in Los Angeles ambient air, Environ. Sci. Technol. 16, 254–262.

    Google Scholar 

  • Grosjean, D., 1977, Aerosols, in Ozone and Other Photochemical Oxidants, National Academy of Sciences, Washington, DC, pp. 45–125.

    Google Scholar 

  • Grosjean, D., 1975, Solvent extraction and organic carbon determination in atmospheric particulate matter: the organic extraction-organic carbon analyzer (OE-OCA) technique, Anal. Chem. 47, 797–805.

    Google Scholar 

  • Grosjean, D., Grosjean, E., and William II, E. L., 1994, Atmospheric chemistry of olefins: a product study of the ozone-alkene reaction with cyclohexane added to scavenge OH, Environ. Sci. Technol. 28, 186–196.

    Google Scholar 

  • Grosjean, D., Grosjean, E., and William II, E. L., 1993, Atmospheric chemistry of unsaturated alcohols, Environ. Sci. Technol. 27, 2478–2485.

    Google Scholar 

  • Grosjean, D. and Seinfeld, J. H., 1989, Parameterization of the formation potential of secondary organic aerosols, Atmos. Environ. 23, 1733–1747.

    Google Scholar 

  • Grosjean, D. and Friedlander, S. K., 1980, Formation of organic aerosols from cyclic olefins and diolefins, in G. M. Hidy, P. K. Mueller, D. Grosjean, B. R. Appel, and J. J. Wesolowski (eds.), The Character and Origins of Smog Aerosols-A Digest of Results from California Aerosol Characterization Experiment (ACHEX), John Wiley & Sons, New York, pp. 435–473.

    Google Scholar 

  • Grosjean, D., Cauwenberghe, K. V., Schmid, J. P., Kelly, P. E., and Pitts Jr., J. N., 1978 Identification of C3−C10 aliphatic dicarboxylic acids in airborne particulate matter, Environ. Sci. Technol. 12, 313–317.

    Google Scholar 

  • Grosjean, D. and Friedlander, S. K., 1975, Gas-particle distribution factors for organic and other pollutants in the Los Angeles atmosphere, J. Air Pollut. Control Assoc. 25, 1038–1044.

    Google Scholar 

  • Grosjean, D. and Friedlander, S. K., 1974, Gas-particle distribution factors for organic pollutants in the Los Angeles atmosphere. Presented at the 67th Annual Meeting of the Air Pollution Control Association, June 9–13, Denver, CO.

  • Guenther, A., Hewitt, C. N., Erickson, D. et al., 1995, A global model of natural volatile organic compound emissions, J Geophys. Res. 100, 8873–8892.

    Google Scholar 

  • Gundel, L. A., de Martins, B. S., and Daisey, J., 1995, Polar organic material in ambient particles. Presented at the Air and Waste Management Association's International Conference entitled Particulate Matter: Health and Regulatory Issues, April 4–6, Pittsburgh, PA.

  • Gundel, L. A., Daisey, J. M., de Carvalho, L. R. F., Kado, N. Y., and Schuetzle, D., 1993, Polar organic matter in airborne particles: chemical characterization and mutagenic activity, Environ. Sci. Technol. 27, 2112–2119.

    Google Scholar 

  • Gundel, L. A. and Novakov, T., 1984, Characterization of particles from several sources and three urban areas by solvent extraction, Atmos. Environ. 18, 273–276.

    Google Scholar 

  • Hahn, J., 1980, Organic constituents of natural aerosols, Ann. N. Y. Acad. Sci. 338, 359–376.

    Google Scholar 

  • Hameri, K., Rood, M. J., and Hansson, H.-C., 1992, Hygroscopic properties of a NaCl aerosol coated with organic compounds, J. Aerosol Sci. 23, Sppl. 1, S437-S440.

    Google Scholar 

  • Hanel, G., 1976, The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys. 19, 73–188.

    Google Scholar 

  • Harrington, R. F., Gertler, A. W., Grosjean, D., and Amar, P., 1993, Formic acid and acetic acid in the Western Sierra Nevada, California, Atmos. Environ. 27A, 1843–1849.

    Google Scholar 

  • Hartmann, W. R., Andreae, M. O., and Helas, G., 1989, Measurements of organic acids over central Germany, Atmos. Environ. 23, 1531–1533.

    Google Scholar 

  • Helmig, D., Bauer, A., Muller, J., and Klein, W., 1990, Analysis of particulate organics in a forest atmosphere by thermodesorption GC/MS, Atmos. Environ. 24A, 179–184.

    Google Scholar 

  • Hildemann, L. M., Rogge, W. F., Cass, G. R., Mazurek, M. A., and Simoneit, B. R. T., 1996, Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles, J. Geophys. Res. (in press).

  • Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1994, Seasonal trends in Los Angeles ambient organic aerosol observed by high-resolution gas chromatography, Aerosol Sci. Technol. 20, 303–317.

    Google Scholar 

  • Hine, J. and Mookerjee, P. K., 1975, The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem. 40, 292–298.

    Google Scholar 

  • Hoff, J. T., Mackay, D., Gillham, R., and Shiu, W. Y., 1993, Partitioning of organic chemicals at the air-water interface in environmental systems, Environ. Sci. Technol. 27, 2174–2180.

    Google Scholar 

  • Hort, E. V., 1972, Glycols and bischloroformates, in J. K. Stille and T. W. Campbell (eds.), Condensation Monomers, Wiley-Interscience, New York, pp. 261–310.

    Google Scholar 

  • Hoshika, Y., 1982, Gas chromatographic determination of lower fatty acids in air at part-per-trillion levels, Anal. Chem. 54, 2433–2437.

    Google Scholar 

  • Husar, R. B. and Shu, W. R., 1975, Thermal analyses of the Los Angeles smog aerosol, J. Appl. Meteorol. 14, 1558–1565.

    Google Scholar 

  • Johnson, B. J. and Dawson, G. A., 1993, A preliminary study of the carbon-isotopic content of ambient formic acid and two selected sources: automobile exhaust and formicine ants, J. Atmos. Chem. 17, 123–140.

    Google Scholar 

  • Junge, C. E., 1977, Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants, in I. H. Suffet (ed.), Fate of Pollutants in the Air and Water Environments, John Wiley and Sons, New York, pp. 7–25.

    Google Scholar 

  • Kames, J. and Schurath, U., 1992, Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies, J. Atmos. Chem. 15, 79–95.

    Google Scholar 

  • Kawamura, K. and Ikushima, K., 1993, Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere, Environ. Sci. Technol. 27, 2227–2235.

    Google Scholar 

  • Kawamura, K. and Kaplan, I. R., 1991, Organic compounds in rain water, in L. D. Hansen and D. J. Eatough (eds.), Organic Chemistry of the Atmosphere, CRC Press, Boca Raton, FL, pp. 233–284.

    Google Scholar 

  • Kawamura, K. and Gagosian, R. B., 1990, Mid-chain ketocarboxylic acids in the remote marine atmosphere: distribution patterns and possible formation mechanisms, J. Atmos. Chem. 11, 107–122.

    Google Scholar 

  • Kawamura, K. and Gagosian, R. B., 1988, Identification of isomeric hydroxy fatty acids in aerosol samples by capillary gas chromatography-mass spectrometry, J. Chromatogr. 438, 309–317.

    Google Scholar 

  • Kawamura, K. and Gagosian, R. B., 1987, Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids, Nature 325, 330–332.

    Google Scholar 

  • Kawamura, K. and Kaplan, I. R., 1987, Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol. 21, 105–110.

    Google Scholar 

  • Kawamura, K., Ng, L.-L., and Kaplan, I. R., 1985, Determination of organic acids (C1−C10) in the atmosphere, motor exhausts, and engine oils, Environ. Sci. Technol. 19, 1082–1086.

    Google Scholar 

  • Keene, W. C. and Galloway, J. N., 1986, Considerations regarding sources for formic and acetic acids in the troposphere, J. Geophys. Res. 91, 14466–14474.

    Google Scholar 

  • Kelly, T. J., Callahan, P. J., Pleil, J., and Evans, G. F., 1993, Method development and field measurements of polar volatile organic compounds in ambient air, Environ. Sci. Technol. 27, 1146–1153.

    Google Scholar 

  • Khan, I., Brimblecombe, P., and Clegg, S. L., 1995, Solubilities of pyruvic acid and the lower (C1−C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem. 22, 285–302.

    Google Scholar 

  • Khwaja, H. A., 1995, Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site, Atmos. Environ. 29, 127–139.

    Google Scholar 

  • Klotz, B. G., Bierbach, A., Barnes, I., and Becker, K. H., 1995, Kinetic and mechanistic study of the atmospheric chemistry of muconaldehydes, Environ. Sci. Technol. 29, 2322–2332.

    Google Scholar 

  • Konig, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and Rudolph, J., 1995, Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species, Atmos. Environ. 29, 861–874.

    Google Scholar 

  • Koutrakis, P., 1995, Private communication concerning gas-particle distribution of C1−C8 organic acids in the observations discussed in Lawrence, J. E. and Koutrakis, P., 1996a&b.

  • Lawrence, J. E. and Koutrakis, P., 1996a, Measurement and speciation of gas and particulate phase organic acidity in an urban environment. 1. Analytical, J. Geophys. Res. (in press).

  • Lawrence, J. E. and Koutrakis, P., 1996b, Measurement and speciation of gas and particulate phase organic acidity in an urban environment, 2. Speciation, J. Geophys. Res. (in press).

  • Lawrence, J. E. and Koutrakis, P., 1994, Measurement of atmospheric formic and acetic acids: methods evaluation and results from field study, Environ. Sci. Technol. 28, 957–964.

    Google Scholar 

  • Le Lacheur, R. M., Sonnenberg, L. B., Singer, P. C., Christman, R. F., and Charles, M. J., 1993, Identification of carbonyl compounds in environmental samples, Environ. Sci. Technol. 27, 2745–2753.

    Google Scholar 

  • Lefer, B. L., Talbot, R. W., Harriss, R. C. et al., 1994, Enhancement of acidic gases in biomass burning impacted air masses over Canada, J. Geophys. Res. 99, 1721–1737.

    Google Scholar 

  • Li, S.-M. and Winchester, J. W., 1993, Water soluble organic constituents in Arctic aerosols and snow pack, Geophys. Res. Lett. 20, 45–48.

    Google Scholar 

  • Lind, J. A. and Kok, G. L., 1994, Correction to ‘Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid’ by John A. Lind and Gregory L. Kok, J. Geophys. Res. 99, 21119.

    Google Scholar 

  • Loudon, G. M., 1984, Organic Chemistry, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H., 1990, Handbook of Chemical Property Estimation Methods, American Chemical Society, Washington, DC.

    Google Scholar 

  • Mansoori, B. A., Johnston, M. V., and Wexler, A. S., 1994, Quantitation of ionic species in single microdroplets by on-line laser desorption/ionization, Anal. Chem. 66, 3681–3687.

    Google Scholar 

  • Markley, K. S., 1960, Fatty Acids: Their Chemistry, Properties, Production, and Uses. Part 1, Interscience, New York.

    Google Scholar 

  • Martin, L. R. and Damschen, D. E., 1981, Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ. 15, 1615–1621.

    Google Scholar 

  • Matthias-Maser, S. and Jaenicke, R., 1994, Examination of atmospheric bioaerosol particles with radii > 0.2 μm, J. Aerosol Sci. 25, 1605–1613.

    Google Scholar 

  • Mazurek, M., Mason-Jones, M. C., Mason-Jones, H. D., Salmon, L. G., Cass, G. R. Hallock, K. A., and Leach, M., 1996, visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: 1. Properties observed by high resolution gas chromatography. Submitted to J. Geophys. Res.

  • Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1991, Biological input to visibility-reducing aerosol particles in the remote arid southwestern United States, Environ. Sci. Technol. 25, 684–694.

    Google Scholar 

  • Mazurek, M. A., Hallock, K., Molkenbur, C., Cass, G. R., Jones, M., Mason, H., and Winner, D., 1993, Organic compounds emitted in smoke aerosol from combustion of green vegetation and seasoned firewood at Grand Canyon National Park. Presented at the annual meeting of the American Association for Aerosol Research, October 11–15, Oakbrook, IL. Document No. BNL-48753, Brookhaven National Laboratory, Upton, NY.

    Google Scholar 

  • Mazurek, M. A., Simoneit, B. R. T., Cass, G. R., and Gray, H. A., 1987, Quantitative high-resolution gas chromatography/mass spectrometry analyses of carbonaceous fine aerosol particles, Intern. J. Environ. Anal. Chem. 29, 119–139.

    Google Scholar 

  • McMurry, P. H., Zhang, X., and Lee, C.-T., 1996, Issues in aerosol measurement for optical assessments, J. Geophys. Res. (in press).

  • Meng, Z., Seinfeld, J. H., Saxena, P., and Kim, Y. P., 1995, Contribution of water to particulate mass in the South Coast Air Basin, Aerosol Sci. Technol. 22, 111–123.

    Google Scholar 

  • Mellan, I., 1962, Polyhydric Alcohols, Spartan Books, Washington, DC.

    Google Scholar 

  • Meylan, W. M. and Howard, P. H., 1991, Bond contribution method for estimating Henry's law constants, Environ. Toxicol. Chem. 10, 1283–1294.

    Google Scholar 

  • Milas, N. A., Kurz, P. F., and Anslow Jr., W. P., 1937, The photochemical addition of hydrogen peroxide to the double bond, J. Amer. Chem. Soc. 59, 543–544.

    Google Scholar 

  • Morrison, R. T. and Boyd, R. N., 1992, Organic Chemistry, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Mueller, P. K., Fung, K. K., Heisler, S. L., Grosjean, D., and Hidy, G. M., 1982, Atmospheric particulate carbon observations in urban and rural areas of the United States, in G. T. Wolff and R. L. Klimisch (eds.), Particulate Carbon—Atmospheric Life Cycle, Plenum Press, New York, pp. 343–370.

    Google Scholar 

  • Mueller, P. K., Mosley, R. W., and Pierce, L. B., 1972, Chemical composition of Pasadena aerosol by particle size and time of day. IV. Carbonate and noncarbonate carbon content, J. Colloid Interface Sci. 39, 235–239.

    Google Scholar 

  • Muilenberg, M. L., 1995, The outdoor aerosol, in H. A. Burge (ed.), Bioaerosols, Lewis Publishers, Boca Raton, FL, pp. 163–204.

    Google Scholar 

  • Munz, C. and Roberts, P. V., 1986, The effects of solute concentration and cosolvents on the aqueous activity coefficients of halogenated hydrocarbons, Environ. Sci. Technol. 20, 830–836.

    Google Scholar 

  • Murphy, D. M. and Thompson, D. S., 1995, Laser ionization mass spectroscopy of single aerosol particles, Aerosol Sci. Technol. 22, 237–249.

    Google Scholar 

  • Myers, D., 1991, Surfaces, Interfaces, and Colloids. Principles and Applications, VCH Publ., New York.

    Google Scholar 

  • Nielsen, F., Olsen, E., and Fredenslund, A., 1994, Henry's Law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method, Environ. Sci. Technol. 28, 2133–2138.

    Google Scholar 

  • Novakov, T. and Penner, J. E., 1993, Large contribution of organic aerosols to cloud-condensationnuclei concentrations, Nature 365, 823–826.

    Google Scholar 

  • Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1993, Fourier transform infrared analysis of aerosol formed in the photooxidation of 1-octene, Atmos. Environ. 27A, 1471–1477.

    Google Scholar 

  • Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1992, Fourier transform infrared analysis of aerosol formed in the photo-oxidation of isoprene and β-pinene, Atmos. Environ. 26A, 1239–1251.

    Google Scholar 

  • Pandis, S. N., Wexler, A. S., and Seinfeld, J. H., 1993, Secondary organic aerosol formation and transport-II. Predicting the ambient secondary organic aerosol size distribution, Atmos. Environ. 27A, 2403–2416.

    Google Scholar 

  • Pandis, S. N., Harley, R. A., Cass, G. R., and Seinfeld, J. H., 1992, Secondary organic aerosol formation and transport, Atmos. Environ. 26A, 2269–2282.

    Google Scholar 

  • Pankow, J. F., 1994a, An absorption model of the gas/aerosol partitioning of organic compounds in the atmosphere, Atmos. Environ. 28, 185–188.

    Google Scholar 

  • Pankow, J. F., 1994b, An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ. 28, 189–193.

    Google Scholar 

  • Pankow, J. F., 1987, Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere, Atmos. Environ. 21, 2275–2283.

    Google Scholar 

  • Pankow, J. F., Storey, J. M. E., and Yamasaki, H., 1993, Effects of relative humidity on gas/particle partitioning of semivolatile organic compounds to urban particulate matter, Environ. Sci. Technol. 27, 2220–2226.

    Google Scholar 

  • Perry, R. H. and Chilton, C. H., 1973, Chemical Engineers' Handbook, McGraw-Hill, New York.

    Google Scholar 

  • Popovych, O. and Tomkins, R. P. T., 1981, Nonaqueous Solution Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  • Pryde, E. H. and Cowan, J. C., 1972, Aliphatic dibasic acids, in J. K. Stille and T. W. Campbell (eds.), Condensation Monomers, Wiley-Interscience, New York, pp. 1–153.

    Google Scholar 

  • Puxbaum, H. and Kunit, M., 1994, Determination of the cellulose content of atmospheric aerosols. Presented at the Fifth International Conference on Carbonaceous Particles in the Atmosphere, 23–26 August, Berkeley, CA.

  • Raridon, R. J. and Kraus, K. A., 1971, Properties of mixtures. Activity coefficients of sodium chloride at saturation in aqueous solutions of some oxy-oxa compounds at 25°C, J. Chem. Eng. Data 16, 241–243.

    Google Scholar 

  • Reents Jr., W. D., Downey, S. W., Emerson, A. B., Mujsce, A. M., Muller, A. J., Siconolfi, D. J., Sinclair, J. D., and Swanson, A. G., 1995, Single particle characterization by time-of-flight mass spectrometry, Aerosol Sci. Technol. 23, 263–270.

    Google Scholar 

  • Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., 1977, The Properties of Gases and Liquids, McGraw-Hill, New York.

    Google Scholar 

  • Renzetti, N. A. and Doyle, G. J., 1959, The chemical nature of the particulate in irradiated automobile exhaust, J. Air Pollut. Control Assoc. 8, 293–296.

    Google Scholar 

  • Robinson, R. A. and Stokes, R. H., 1968, Electrolyte Solutions, Butterworths, London, UK.

    Google Scholar 

  • Roedel, W., 1979, Meaurement of sulfuric acid saturation vapor pressure; implications for aerosol formation by heteromolecular nucleation, J. Aerosol Sci. 10, 375–386.

    Google Scholar 

  • Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T., 1993a, Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ. 27A, 1309–1330.

    Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1993b, Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks, Environ. Sci. Technol. 27, 636–651.

    Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1993c, Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks, Environ. Sci. Technol. 27, 1892–1904.

    Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1993d, Sources of fine organic aerosol. 4. Particulate abrasive products from leaf surfaces of urban plants, Environ. Sci. Technol. 27, 2700–2711.

    Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1991, Sources of fine organic aerosol. I. Charbroilers and meat cooking operations, Environ. Sci. Technol. 25, 1112–1125.

    Google Scholar 

  • Sanhueza, E., Santana, M., and Hermoso, M., 1992, Gas- and aqueous-phase formic and acetic acids at a tropical cloud forest site, Atmos. Environ., 26A, 1421–1426.

    Google Scholar 

  • Satsumabayashi, H., Kurita, H., Chang, Y.-S., Carmichael, G. R., and Ueda, H., 1995, Photochemical formations of lower aldehydes and lower fatty acids under long-range transport conditions in central Japan, Atmos. Environ. 29, 255–266.

    Google Scholar 

  • Saxena, P., Hildemann, L. M., McMurry, P. H., and Seinfeld, J. H., 1995, Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res. 100, 18755–18770.

    Google Scholar 

  • Schuetzle, D., 1975, Analysis of complex mixtures by computer controlled high resolution mass spectrometry. I-Application to atmospheric aerosol composition, Biomed. Mass Spectr. 2, 288–298.

    Google Scholar 

  • Schuetzle, D., Cronn, D., Crittenden, A. L., and Charlson, R. J., 1975, Molecular composition of secondary aerosol and its possible origin, Environ. Sci. Technol. 9, 838–845.

    Google Scholar 

  • Sebastiani, E. and Lacquaniti, L., 1967, Acetic acid-water system thermodynamical correlation of vapor-liquid equilibrium data, Chem. Eng. Sci. 22, 1155–1162.

    Google Scholar 

  • Seidell, A., 1941. Solubilities of Organic Compounds, D. Van Nostrand, New York.

    Google Scholar 

  • Seinfeld, J. H., 1986, Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons, New York.

    Google Scholar 

  • Sempere, R. and Kawamura, K., 1994, Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere, Atmos. Environ. 28, 449–459.

    Google Scholar 

  • Serjeant, E. P. and Dempsey, B., 1979, Ionisation Constants of Organic Acids in Aqueous Solution, International Union of Pure and Applied Chemistry (IUPAC) Chemical Data Series No. 23, Pergamon Press, New York.

    Google Scholar 

  • Servant, J., Kouadio, G., Bernard, C., and Delmas, R., 1991. Carboxylic monoacids in the air of Mayombe Forest (Congo): Role of the forest as a source or sink, J. Atmos. Chem. 12, 367–380.

    Google Scholar 

  • Shinoda, K., 1978, Principles of Solution and Solubility, Marcel Dekker, New York.

    Google Scholar 

  • Sigma, 1995, Biochemicals, Organic Compounds and Diagnostic Reagents for Research, Sigma Chemical Company, St. Louis, MO.

    Google Scholar 

  • Simoneit, B. R. T., 1986, Characterization of organic constituents in aerosols in relation to their origin and transport: A review, Int. J. Environ. Anal. Chem. 23, 207–237.

    Google Scholar 

  • Simoneit, B. R. T., Crisp, P. T., Mazurek, M. A., and Standley, L. J., 1991, Composition of extractable organic matter of aerosols from the Blue Mountains and southeast coast of Australia, Environ. Int. 17, 405–419.

    Google Scholar 

  • Simoneit, B. R. T., Sheng, G., Chen, X., Fu, J., Zhang, J., and Xu, Y., 1991, Molecular marker study of extractable organic matter in aerosols from urban areas of China, Atmos. Environ. 25A, 2111–2129.

    Google Scholar 

  • Simoneit, B. R. T. and Mazurek, M. A., 1982, Organic matter of the troposphere-II. Natural back-ground of biogenic lipid matter in aerosols over the rural western United States, Atmos. Environ. 16, 2139–2159.

    Google Scholar 

  • Singh, H. B., O'Hara, D., Herlth, D., Sachse, W., Blake, D. R., Bradshaw, J. D., Kanakidou, M., and Crutzen, P. J., 1994, Acetone in the atmosphere: distribution, sources and sinks, J. Geophys. Res. 99, 1805–1819.

    Google Scholar 

  • Sisler, J. F. and Malm, W. C., 1994, The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States, Atmos. Environ. 28, 851–862.

    Google Scholar 

  • Sloane, C. S., Watson, J., Chow, J., Pritchett, L., and Richards, L. W., 1991, Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver, Atmos. Environ. 25A, 1013–1024.

    Google Scholar 

  • Smith, J. M. and Van Ness, H. C., 1975, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, New York.

    Google Scholar 

  • Solomon, P. A., Fall, T., Salmon, L., Lin, P., Vasquez, F., and Cass, G. R., 1988, Acquisition of acid vapor and aerosol concentration data for use in dry deposition studies in the South Coast Air Basin. Vol. 1. Environmental Quality Laboratory, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Stanley, T. W., Meeker, J. E., and Morgan, M. J., 1967, Extraction of organics from airborne particles-effects of various solvents and conditions on the recovery of benzo(a)pyrene, benz(c)acridine, and 7H-benz(de)anthracen-7-one, Environ. Sci. Technol. 1, 927–931.

    Google Scholar 

  • Stephen, H. and Stephen, T., 1963, Solubilities of Inorganic and Organic Compounds. Volume 1, Pergamon Press, London, UK.

    Google Scholar 

  • Storey, J. M. E. and Pankow, J. F., 1992, Gas-particle partitioning of semi-volatile organic compounds to model atmospheric particulate materials-I. Sorption to graphite, sodium chloride, alumina, and silica particles under low humidity conditions, Atmos. Environ. 26A, 435–443.

    Google Scholar 

  • Streitwieser Jr., A. and Heathcock, C. H., 1985, Introduction to Organic Chemistry, Macmillan, New York.

    Google Scholar 

  • Suleiman, D. and Eckert, C. A., 1994, Limiting activity coefficients of diols in water by a dew point technique, J. Chem. Eng. Data 39, 692–696.

    Google Scholar 

  • Suzuki, T., Ohtaguchi, K., and Koide, K., 1992, Application of principal components analysis to calculate Henry's constant from molecular structure, Computers Chem. 16, 41–52.

    Google Scholar 

  • Tang, I. N. and Munkelwitz, H. R., 1991, Determination of vapor pressure from droplet evaporation kinetics, J. Colloid Interface Sci. 141, 109–118.

    Google Scholar 

  • Tao, Y. and McMurry, P. H., 1989, Vapor pressures and surface free energies of C14−C18 monocarboxylic acids and C5 and C6 dicarboxylic acids, Environ. Sci. Technol. 23, 1519–1523.

    Google Scholar 

  • Thibodeaux, L. J., Nadler, K. C., Valsaraj, K. T., and Reible, D. D., 1991, The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols-competitive adsorption theory predictions, Atmos. Environ. 25A, 1649–1656.

    Google Scholar 

  • Tokos, J. J. S., Tanaka, S., Morikami, T., Shigetani, H., and Hashimoto, Y., 1992, Gaseous formic and acetic acids in the atmosphere of Yokohama, Japan, J. Atmos. Chem. 14, 85–94.

    Google Scholar 

  • Trivedi, B. C. and Culbertson, B. M., 1982, Maleic Anhydride, Plenum Press, New York.

    Google Scholar 

  • Turpin, B. J., Saxena, P., Allen, G., McMurry, P. H., Koutrakis, P., and Hildemann, L. M., 1996, Characterization of the southwestern desert aerosol, Meadview, AZ, J. Air Waste Manage Assoc. (in press).

  • Turpin, B. J., Huntzicker, J. J., and Hering, S. V., 1994, Investigation of organic aerosol sampling artifacts in the Los Angeles Basin, Atmos. Environ. 28, 3061–3071.

    Google Scholar 

  • Valsaraj, K. T., Thoma, G. J., Reible, D. D., and Thibodeaux, L. J., 1993, On the enrichment of hydrophobic organic compounds in fog droplets, Atmos. Environ. 27A, 203–210.

    Google Scholar 

  • Vasconcelos, L. A. P., Macias, E. S., and White, W. H., 1994, Aerosol composition as a function of haze and humidity levels in the southwestern U. S., Atmos. Environ. 28, 3679–3691.

    Google Scholar 

  • Wang, S.-C., Paulson, S. E., Grosjean, D., Flagan, R. C., and Seinfeld, J. H., 1992, Aerosol formation and growth in atmospheric organic/NOx systems-I. Outdoor smog chamber studies of C7- and C8-hydrocarbons, Atmos. Environ. 26A, 403–420.

    Google Scholar 

  • Warner, J. and Warne, W. G., 1970, The effect of surface films in retarding the growth by condensation of cloud nuclei and their use in fog suppression, J. Appl. Meteorol. 9, 639–650.

    Google Scholar 

  • Wauters, E., Vangaever, E., Sandra, P., and Verzele, M., 1979, Polar organic fraction of air particulate matter, J. Chromatogr. 170, 125–131.

    Google Scholar 

  • Weast, R. C., 1986, Handbook of Chemistry and Physics, 67th edn, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Went, F. W., 1960, Organic matter in the atmosphere, and its possible relation to petroleum formation, Proc. Natl. Acad. Sci. U.S.A., 46, 212–221.

    Google Scholar 

  • White, W. H., 1990, Contributions to light extinction, in Visibility: Existing and Historical Conditions: Causes and Effects. Acidic Deposition: State of Science Report 24, National Acid Precipitation Assessment Program, Washington, DC.

    Google Scholar 

  • Wiesen, E., Barnes, I., and Becker, K. H., 1995, Study of the OH-initiated degradation of the aromatic photooxidation product 3,4-dihydroxy-3-hexene-2,5-dione, Environ. Sci. Technol. 29, 1380–1386.

    Google Scholar 

  • Willey, J. D. and Wilson, C. A., 1993, Formic and acetic acids in atmospheric condensate in Wilmington, North Carolina, J. Atmos. Chem. 16, 123–133.

    Google Scholar 

  • Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K., and Jaeschke, W., 1988, Organic acid gas and liquid-phase measurements in Po Valley fall-winter conditions in the presence of fog, Tellus 40B, 348–357.

    Google Scholar 

  • Yaws, C. L., 1994, Handbook of Vapor Pressure, Volumes 1 & 2, Gulf Publ. Co., Houston, TX.

    Google Scholar 

  • Yokouchi, Y. and Ambe, Y., 1986, Characterization of polar organics in airborne particulate matter, Atmos. Environ. 20, 1727–1734.

    Google Scholar 

  • Yu, J., Jefferies, H. E., and Le Lacheur, R. M., 1995, Identifying airborne carbonyl compounds in isoprene atmospheric photooxidation products by their PFBHA oximes using gas chromatography/ion trap mass spectrometry, Environ. Sci. Technol. 29, 1923–1932.

    Google Scholar 

  • Zhang, J., He, Q., and Lioy, P. J., 1994, Characteristics of aldehydes: Concentrations, sources, and exposures for indoor and outdoor residential microenvironments, Environ. Sci. Technol. 28, 146–152.

    Google Scholar 

  • Zhang, X. Q., McMurry, P. H., Hering, S. V., and Casuccio, G. S., 1993, Mixing characteristics and water content of submicron aerosols measured in Los Angeles and at the Grand Canyon, Atmos. Environ. 27A, 1593–1607.

    Google Scholar 

  • Zhou, X. and Mopper, K., 1990, Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air-sea exchange, Environ. Sci. Technol. 24, 1864–1869.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, P., Hildemann, L.M. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24, 57–109 (1996). https://doi.org/10.1007/BF00053823

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053823

Key words

Navigation