Skip to main content
Log in

Distribution, speciation, and budget of atmospheric mercury

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Total gaseous mercury (TGM) concentrations over the Atlantic Ocean and over Central Europe were measured repeatedly in the years 1978–1981. The latitudinal TGM distribution showed a pronounced and reproducible interhemispherical difference with higher TGM concentrations in the Northern Hemisphere. TGM was found to be vertically well mixed within the troposphere. The TGM concentration seems to increase with time at a rate of 10±8%/yr in the Northern and 8±3%/yr in the Southern Hemisphere. Measurements of mercury speciation showed that elemental mercury is the main TGM component contributing more than 92% and 83% of TGM in marine and continental air, respectively. The tropospheric mercury burden was calculated to be 6×109g. The interhemispheric distribution and temporal and spatial variability of TGM imply a tropospheric residence time of TGM of about 1 yr. Sink strengths calculated independently from the measured mercury concentration on particles and in rainwater are consistent with the above figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovskiy, B. P., Anokhin, Y. A., Ionov, V. A., Nazarov, E. M., and Ostromogilskiy, A. K., 1975, Global balance and maximum permissible mercury emissions into the atmosphere, in Second Joint U.S./U.S.S.R. Symp. Comprehensive Analysis of the Environment Proc., Honolulu, U.S. Environ. Prot. Agency 600/9-76-024.

  • Ambe M. and Suwabe K., 1977, The preparation of standard solutions of mercury at the ppb level, Anal. Chim. Acta 92, 55–60.

    Google Scholar 

  • Andren A. W. and Nriagu J. O., 1979, The global cycle of mercury, in J. O. Nriagu (ed.), The biogeochemistry of Mercury in the Environment, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 1–21.

    Google Scholar 

  • Andren A. W. and Harris R. C., 1975, Observations on the association between mercury and organic matter dissolved in natural waters, Geochim. Cosmochim. Acta 39, 1253–1257.

    Google Scholar 

  • Appelquist H., Jensen K. O., Sevel T., and Hammer C., 1978, Mercury in the Greenland ice sheet, Nature 273, 657–659.

    Google Scholar 

  • Baker C. W., 1977, Mercury in surface waters of seas around the United Kingdom, Nature 270, 230–232.

    Google Scholar 

  • Ballantine D. S. Jr. and Zoller W. H., 1984, Collection and determination of volatile organic mercury compounds in the atmosphere by gas chromatography with microwave plasma detection, Anal. Chem. 56, 1288–1293.

    Google Scholar 

  • Baumgartner A. and Reichel E., 1975, The World Water Balance, Elsevier, New York, 1975.

    Google Scholar 

  • Beenakker C. I. M., 1976, A cavity for microwave induced plasmas operated in helium and argon at atmospheric pressure, Spectrochim. Acta 31B, 483–486.

    Google Scholar 

  • Braman R. S. and Johnson D. L., 1974, Selective absorption tubes and emission technique for determination of ambient forms of mercury in air, Environ. Sci. Technol. 8, 996–1003.

    Google Scholar 

  • Bricker J. L., 1980, Atomic emission spectrometer determination of mercury in natural waters at the part-per-trillion level, Anal. Chem. 52, 492–496.

    Google Scholar 

  • Brosset C., 1982, Total airborne mercury and its possible origin, Water Air Soil Pollut. 17, 37–52.

    Google Scholar 

  • Carr R. A. and Wilkness P. E., 1973, Mercury in the Greenland ice sheet: Further data, Science 181, 843–844.

    Google Scholar 

  • Carr R. A. and Wilkness P. E., 1973, Mercury: Short-term storage of natural waters, Environ. Sci. Technol. 7, 62–63.

    Google Scholar 

  • Christmann D. R. and Ingle J. D. Jr., 1976, Problems with sub-ppb mercury determinations: Preservation of standards and prevention of water mist interferences, Anal. Chim. Acta 86, 53–62.

    Google Scholar 

  • Dams R and DeJonge J., 1976, Chemical composition of Swiss aerosols from the Jungfraujoch, Atmos. Environ. 10, 1079–1084.

    Google Scholar 

  • Fitzgerald W. F., 1976, Mercury studies of seawater and rain: Geochemical flux implications, in H. L. Windom and R. A. Duce (eds.), Marine Pollutant Transfer, Lexington Books, Lexington, Mass., pp. 121–134.

    Google Scholar 

  • Fitzgerald W. F. and Gill G. A., 1979, Subnanogram determination of mercury by two-stage-gold amalgamation and gas phase detection applied to atmospheric analysis, Anal. Chem. 51, 1714–1720.

    Google Scholar 

  • Fitzgerald W. F., 1979, Distribution of mercury in natural waters in J. O. Nriagu (ed.), The Biogeochemistry of Mercury in the Environment, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 161–173.

    Google Scholar 

  • Fitzgerald, W. F., Gill, G. A., and Hewitt, A. D., 1983, Air-sea exchange of mercury, in Wong et al. (eds.) Trace Metals in Sea Water, Plenum, pp. 297–315.

  • Fogg T. R. and Fitzgerald W. F., 1979, Mercury in southern New England coastal rains, J. Geophys. Res. 84, 6987–6989.

    Google Scholar 

  • Galloway J. N., Thornton J. D., Norton S. A., Volchok H. L., and McLean R. A. N., 1982, Trace metals in atmospheric deposition: A review and assessment, Atmos. Environ. 16, 1677–1700.

    Google Scholar 

  • Garrels R. M., Mackenzie F. T., and Hunt C., 1975, Chemical Cycles and the global Environment Assessing Human Influences, William Kaufman, Los Altos, Calif.

    Google Scholar 

  • Goldberg, E. D., 1975, Atmospheric transport of mercury from continents to the oceans, in Proceedings of a Workshop on the Tropospheric Transport of Pollutants to the Ocean, Natl. Res. Council, Miami, 1975.

  • Hamrud M., 1983, Residence time and spatial variability for gases in the atmosphere, Tellus 35B, 295–303.

    Google Scholar 

  • Harrison R. M. and Laxen D. P. H., 1978, Sink processes for tetraalkyllead compounds in the atmosphere, Environ. Sci. Technol. 12, 1384–1392.

    Google Scholar 

  • Henriques A., and Isberg J., 1975, A new method for collection and separation of metallic mercury and organo-mercury compounds in air, Chem. Scripta 8, 173–176.

    Google Scholar 

  • Herron, M. M., Langway, C. C., Weiss, M. V., Huxey, P., Kerr, R., and Gragin, J., 1976, Vanadium and other elements in Greenland ice cores, CRREL Report, 76-24.

  • Iverfeldt A., and Lindqvist O., 1982, Distribution equilibrium of methyl mercury chloride between water and air, Atmos. Environ. 16, 2917–2925.

    Google Scholar 

  • Jaworowski Z., Bysiek M., and Kownacka L., 1981, Flow of metals into the global atmosphere, Geochim. Cosmochim. Acta 45, 2185–2199.

    Google Scholar 

  • Johnson D. L. and Braman R. S., 1974, Distribution of atmospheric mercury species near ground, Environ. Sci. Technol. 8, 1003–1009.

    Google Scholar 

  • Jonasson I. R., 1973, Migration of trace metals in snow, Nature 241, 447–448.

    Google Scholar 

  • Junge C. E., 1974, Residence time and variability of tropospheric trace gases, Tellus 26, 477–488.

    Google Scholar 

  • Junge C. E., 1977, Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants, in I. H. Suffet (ed.), Fate of Pollutants in the Air and Water Environments, Part 1, Vol. 8, John Wiley, New York, pp. 7–23.

    Google Scholar 

  • Kaiser G., and Tölg G., 1980, in O. Hutzinger (ed.), The Handbook of Environmental Chemistry, Vol. 3, Part A, Springer Verlag, Berlin, pp. 1–58.

    Google Scholar 

  • Kaiser G., Götz D., Tölg G., Knapp G., Maichin B., and Spitzy H., 1978, Untersuchung von systematischen Fehlern bei der Bestimmung von Hg-Gesamtgehalten im Bereich 10−5% in anorganischen und organischen Matrices mit zwei unabhängigen Verbundverfahren, Z. Anal. Chem. 291, 278–291.

    Google Scholar 

  • Kaiser, G., Tölg, G., and Schlichting, E., 1978, Natürliche und anthropogene Quecksilberanreicherung in Filderlehm-Böden, in Sonderreihe Umwelttagung, Univ. Hohenheim.

  • Kalb G. W., 1975, Total mercury mass balance at a coal-fired power plant, in S. P. Babu (ed.), Trace Elements in Fuel, Adv. Chem. Ser. No. 141, ACS, Washington, D. C.

    Google Scholar 

  • Kothny E. L., 1973, The three-phase equilibrium of mercury in nature, in E. L. Kothny (ed.), Trace Elements in the Environment, Adv. Chem. Ser. No. 123, Am. Chem. Soc., Washington, D.C., pp. 48–80.

    Google Scholar 

  • Lantzy R. J. and Mackenzie F. T., 1979, Atmospheric trace metals: Global cycles and assessment of man's impact, Geochim. Cosmochim. Acta 43, 511–525.

    Google Scholar 

  • Lindberg S. E., 1980, Mercury partitioning in a power plant plume and its influence on atmospheric removal mechanisms. Atmos. Environ. 14, 227–231.

    Google Scholar 

  • Lockeretz W., 1974, Deposition of air-borne mercury near point sources, Water, Air, Soil Pollut. 3, 179–193.

    Google Scholar 

  • Matheson D. H., 1979, Mercury in the atmosphere and in precipitation, in J. O. Nriagu (ed.), The Biogeochemistry of Mercury in the Environment, Elsevier/North-Holland Biochemical Press, Amsterdam, pp. 114–129.

    Google Scholar 

  • Matsunaga K. and Goto T., 1976, Mercury in the air and precipitation, Geochem. J. 10, 107–109.

    Google Scholar 

  • Matsunaga K., Konishi S., and Nishimura M., 1979, Possible errors caused prior to measurement of mercury in natural waters with special reference to seawater, Environ. Sci. Technol. 13, 63–65.

    Google Scholar 

  • McNeal J. M. and Rose A. W., 1974, The geochemistry of mercury in sedimentary rocks and soils in Pennsylvania, Geochim. Cosmochim. Acta. 38, 1759–1784.

    Google Scholar 

  • Miller, D. R. and Buchanan, J. M., 1979, Atmospheric transport of mercury: Exposure commitment and uncertainty calculations, Monitoring and Assessment Research Centre Report, No. 14, University of London.

  • Millward G. E. and Griffin J. M., 1980, Concentrations of particulate mercury in the Atlantic marine atmosphere, Sci. Total Environ. 16, 239–248.

    Google Scholar 

  • Millward G. E., Nonsteady state simulations of the global mercury cycle, J. Geophys. Res. 87, 8891–8897.

  • National Academy of Sciences, 1978a, Tropospheric Transport of Pollutants and Other Substances to the Ocean, Report Nat. Acad. Sci., Washington, D.C.

  • National Academy of Sciences, 1978b, An Assessment of Mercury in the Environment, Report Nat. Acad. Sci., Washington, D.C.

  • Niki H., Maker P. D., Savage C. M., Breitenbach L. P., 1983, A long-path Fourier transform infrared study of the kinetics and mechanism for the OH-radical initiated oxidation of dimethylmercury, J. Phys. Chem. 87, 4978–4981.

    Google Scholar 

  • Ottar B., 1981, The transfer of airborne pollutants to the Arctic region, Atmos. Environ. 15, 1439–1445.

    Google Scholar 

  • Pheiffer Madsen P., 1981, Peat bog records of atmospheric mercury deposition, Nature 293, 127–130.

    Google Scholar 

  • Phillips G. F., Dixon B. E., and Lidzey R. G., 1959, The volatility of organo-mercury compounds, J. Sci. Food Agric. 10, 604–610.

    Google Scholar 

  • Pjankov V. A., 1949, Kinetics of the reaction of mercury vapour with ozone, Zhur. Obshestven. Khim. 19, 224–229.

    Google Scholar 

  • Prospero J. M., Charlson R. J., Mohnen V., Jaenicke R., Delany A. C., Moyers J., Zoller W., Rahn K., 1983, The atmospheric aerosol system: an overview, Rev. Geophys. Space Phys. 21, 1607–1629.

    Google Scholar 

  • Rahn K. A., 1975, Chemical composition of the atmospheric aerosol: A compilation, Extern 4, 286–313.

    Google Scholar 

  • Rawlings, G. D., 1974, Identification and measurement of the major chemical forms of mercury in urban atmospheres, Dissertation, Texas A & M University.

  • Ruppert H., 1975, Geochemical investigations on atmospheric precipitation in a medium-sized city (Göttingen, F.R.G.), Water, Air, Soil Pollut. 4, 447–460.

    Google Scholar 

  • Schlesinger W. H., Reiners W. A., and Knopman D. S., 1974, Heavy metal concentrations and deposition in bulk precipitation in montane ecosystems of New Hampshire, U.S.A., Environ. Pollut. 6, 39–47.

    Google Scholar 

  • Schroeder W. H., 1981, Recent developments in the measurement of atmospheric mercury, Canad. Res. 14, 33–41.

    Google Scholar 

  • Schroeder W. H., 1982, Sampling and analysis of mercury and its compounds in the atmosphere, Environ. Sci. Technol. 16, 394A-400A.

    Google Scholar 

  • Seiler W., Eberling C., and Slemr F., 1980, Global distribution of gaseous mercury in the troposphere, Pageoph 118, 964–974.

    Google Scholar 

  • Sheffield, A., 1983, National inventory of sources and emissions of mercury (1978), Environment Canada, Report EPS-3-AP-81-1.

  • Slemr F., Seiler W., and Schuster G., 1978, Quecksilber in der Troposphäre, Ber. Bunsenges. Phys. Chem. 82, 1142–1146.

    Google Scholar 

  • Slemr F., Seiler W., Eberling C., and Roggendorf P., 1979, The determination of total gaseous mercury in air at background levels, Anal. Chim. Acta 110, 35–47.

    Google Scholar 

  • Slemr F., Seiler W., and Schuster G., 1981, Latitudinal distribution of mercury over the Atlantic Ocean, J. Geophys. Res. 86, 1159–1166.

    Google Scholar 

  • Soldano B. A., Bien P., and Kwan P., 1975, Air-borne organo-mercury and elemental mercury emissions with emphasis on central sewage facilities, Atmos. Environ. 9, 941–944.

    Google Scholar 

  • Takizawa Y., 1979, Epidemiology of mercury poisoning, in J. O. Nriagu (ed.), The Biogeochemistry of Mercury in the Environment, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Talmi Y. and Mesmer R. E., 1975, Studies on vaporization and halogen decomposition of methyl mercury compounds using GC with a microwave detector, Water Res. 9, 547–552.

    Google Scholar 

  • Thompson J. E., 1971, Air-borne mercury, in ‘Hazards of Mercury’. Environ. Res. 4, 1–69.

    Google Scholar 

  • Thrane K. E., 1978, Background levels in air of lead, cadmium, mercury, and some other chlorinated hydrocarbons measured in South Norway, Atmos. Environ. 12, 1155–1161.

    Google Scholar 

  • Wasik S. P., Brown R. L., Minor J. I. Jr., 1976, Partition coefficients and solubility measurements of dimethylmercury in fresh and sea water over a temperature range 0–25°C, J. Environ. Sci. Health A 11, 99–105/

    Google Scholar 

  • Watson W. D. Jr., 1979, Economic considerations in controlling mercury pollution, in The Biogeochemistry of Mercury in the Environment, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 41–77.

    Google Scholar 

  • Weiss H. V., Koide M., and Goldberg E. D., 1971, Mercury in a Greenland ice sheet: Evidence of recent input by man. Science 174, 692–694.

    Google Scholar 

  • Weiss H. V., Bertine K., Koide M., and Goldberg E. D., 1975, The chemical composition of a Greenland glacier, Geochim. Cosmochim. Acta 39, 1–10.

    Google Scholar 

  • Williston S. H., 1968, Mercury in the atmosphere, J. Geophys. Res. 73, 7051–7055.

    Google Scholar 

  • Windom H. L. and Taylor F. E., 1979, The flux of mercury in the South Atlantic Bight, Deep-Sea Res. 26A, 283–292.

    Google Scholar 

  • Wolff E. W. and Peel D. A., 1985, The record of global pollution in polar snow and ice, Nature 313, 535–540.

    Google Scholar 

  • Wroblewski S. C., Spittler T. J., and Harrison P. R., 1974, Mercury concentration in the atmosphere of Chicago, J. Air Pollut. Control. Assoc. 24, 778–781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slemr, F., Schuster, G. & Seiler, W. Distribution, speciation, and budget of atmospheric mercury. J Atmos Chem 3, 407–434 (1985). https://doi.org/10.1007/BF00053870

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053870

Key words

Navigation