Skip to main content
Log in

Chromosomal evolution within the family Estrildidae (Aves) I. The Poephilae

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Eleven species of estrildid finches were examined cytogenetically with G- and C-banding. The analysis revealed a preponderance of pericentric inversions at both the inter- and intraspecific levels. In addition, considerable variation in the pattern of heterochromatin distribution, particularly in the sex-chromosomes, was recorded as polymorphisms and interspecific differences. This variation was not found to be associated directly with either speciation or morphological change. Rather, it is argued that only those rearrangements which do not lead to meiotic problems survive in avian lineages.

The chromosomal data were also used to clarify systematic relationships within the Poephilae, demonstrating that the monotypic genera Aegintha and Aidemosyne are allied to the Neochmia group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bickham, J. W. & Baker, R. J., 1979. Canalization model of chromosomal evolution. Bull. Carnegie Mus. Nat. Hist. 13: 70–84.

    Google Scholar 

  • Bitgood, J. J., Shoffner, R. N., Otis, J. S. & Wang, N., 1982. Recombinant inversion chromosomes in phenotypically normal chickens. Science 215: 409–411.

    Google Scholar 

  • Bulatova, N. S., 1973a. Unusually large sex-chromosomes in some larks (Aves:Alaudidae) Mammal. Chromosome Newsl 14: 150.

    Google Scholar 

  • Bulatova, N. S., 1973b. A cytotaxonomic study of three related families of birds. Fringillidae, Emberizidae, Ploceidae. Z. zool. Syst. Evolutionforsch. 11: 233–239.

    Google Scholar 

  • Christidis, L., 1983. Extensive chromosomal repatterning in two congeneric species. Pytilia melba, L. and Pytilia phoenicoptera Swainson (Estrildidae:Aves). Cytogenet. Cell Genet. 36: 641–648.

    Google Scholar 

  • Christidis, L. In press. Biochemical systematics within palaeotropic finches (Aves:Estrildidae). Auk.

  • Christidis, L. In press. Chromosomal evolution within the family Estrildidae (Aves). III. The Estrildidae. Genetica.

  • Cracraft, J., 1982. Geographic differentiation, cladistics and vicariance biogeography: Reconstructing the tempo and mode of evolution. Am. Zool. 22: 411–424.

    Google Scholar 

  • DeBoer, L. E. M., 1976. The somatic chromosome complements of 16 species of Falconiformes (Aves) and the karyological relationships of the order. Genetica 46: 77–113.

    Google Scholar 

  • DeBoer, L. E. M., 1984. New developments in vertebrate cytotaxonomy VIII. A current list of references on avian karyology. Genetica 65: 3–37.

    Google Scholar 

  • Delacour, J., 1943. A revision of the subfamily Estrildinae of the family Ploceidae. Zoologica 28: 69–86.

    Google Scholar 

  • DeLucca, E. J., 1983. Constitutive heterochromatin and the structural complexity of chromosomes in Columbiformes and Psittaciformes (Aves). Caryologia 36: 373–384.

    Google Scholar 

  • DeLucca, E. J., 1984. Chromosomal evolution of South American Columbiformes. Genetica 62: 177–185.

    Google Scholar 

  • DeLucca, E. J. & Aguiar, M. L. D.de., 1976. Chromosomal evolution in Columbiformes (Aves). Caryologia 29: 59–69.

    Google Scholar 

  • DeLucca, E. J. & deMario, D. A., 1983. Chromosomal polymorphism in Forpus xanthopterygus (Psittaciformes:Aves). Caryologia 36: 355–361.

    Google Scholar 

  • Feduccia, A., 1980. The age of birds. Harvard University Press, Cambridge. M.A. Thesis.

  • Fry, K. & Salser, W., 1977. Nucleotide sequences of HS—and satellite DNA from Kangaroo Rat Dipodomys ordii and characterisation of similar sequences in rodents. Cell 12: 1069–1084.

    Google Scholar 

  • Goodwin, D., 1982. Estrildid finches of the World. British Museum (Natural History), Oxford University Press, London. 328 pp.

    Google Scholar 

  • Gray, A. P., 1958. Bird hybrids. Common. Agricult. Bureaux Lond.

  • Hammar, B., 1966. The karyotypes of nine birds. Hereditas 55: 367–385.

    Google Scholar 

  • Hammar, B., 1967. Differences in heterochromatin between some species of birds. Hereditas 57: 209–216.

    Google Scholar 

  • Hammar, B., 1968. Heterochromatin in the prophase of the male meiosis of Columba palumbus L. J. Heredity 58: 297–302.

    Google Scholar 

  • Hennig, W., 1966. Phylogenetic systematies. Univ. of Ill. Press, U.S.A.

    Google Scholar 

  • Immelmann, K., 1982. Australian finches. Angus and Robertson, Australia, 3rd edition 224 pp.

    Google Scholar 

  • Itoh, M., Ikeuchi, T., Shimba, H., Mori, M., Sasaki, M. & Makino, S., 1969. A comparative karyotype study in fourteen species of birds. Jap. J. Genet. 44: 163–170.

    Google Scholar 

  • John, B. & Lewis, K., 1968. The chromosome complement. Protoplasmatologia. VI: 1–206.

    Google Scholar 

  • John, B. & Miklos, G. L. B., 1979. Functional aspects of satellite DNA and heterochromatin. Int. Rev. Cytol. 58: 1–114.

    Google Scholar 

  • Keast, J. A., 1958. Intraspecific variation variation in the Australian finches. Emu 58: 219–246.

    Google Scholar 

  • King, M., 1980. C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma 80: 191–217.

    Google Scholar 

  • Mattoccia, E. & Comings, D. E., 1972. Buyoant density and satellite composition of DNA and mouse heterochromatin. Nature New Biol. 229: 175–176.

    Google Scholar 

  • Mayr, E., 1968. The sequence of genera in the Estrildidae (Aves). Brevioria 287: 1–14.

    Google Scholar 

  • Miklos, G. G., Willcocks, D. A. & Baverstock, P. R., 1980. Restriction endonuclease and molecular analysis of three rat genomes with special reference to chromosome rearrangement and speciation problems. Chromosoma 76: 339–363.

    Google Scholar 

  • Misra, M. & Srivastava, M. D. L., 1974. The W-chromosome in two species of strigiformes. Chrom. Inf. Serv. 17: 28–29.

    Google Scholar 

  • Morris, D., 1958. The comparative ethology of grassfinches (Erythruae) and mannikins (Amadinae). Proc. zool. Soc. Lond. 131: 389–439.

    Google Scholar 

  • Oguma, K., 1933. The development of sexual organs in some interspecific hybrids of Ploceidae and in a type of Uroloncha domestica. Jap. J. Genet. 8: 207–212 (A.B.A.3: 71).

    Google Scholar 

  • Pollock, D. L. & Fechheimer, N. S., 1978. The chromosomes of cockerels (Gallus domesticus) during meiosis. Cytogenet. Cell. Genet. 21: 267–281.

    Google Scholar 

  • Prager, E. M. & Wilson, A. C., 1975. Slow evolutionary loss of the potential for interspecific hybridization in birds; a manifestation of slow regulatory evolution. Proc. natn. Acad. Sci. U.S.A. 72: 200–204.

    Google Scholar 

  • Prasad, R. & Patnaik, C., 1977. Karyotypes of five passerine birds belonging to the family Ploceidae. Caryologia 30: 361–368.

    Google Scholar 

  • Ray-Chaudhuri, R., 1976. Cytotaxonomy and chromosome evolution in Passeriformes (Aves): A comparative study of seventeen species. Z. zool. Syst. Evolutionsforsch. 14: 299–320.

    Google Scholar 

  • Ray-Chaudhuri, R., Sharma, T. & Ray-Chaudhuri, S. P., 1969. A comparative study of the chromosomes of birds. Chromosoma 26: 148–168.

    Google Scholar 

  • Ryttman, H. & Tegelström, H., 1981. G-banded karyotypes of three Galliforme species, domestic fowl (Gallus domesticus), quail (Coturnix coturnix japonica), and turkey (Meleagris gallopavo). Hereditas 94: 165–170.

    Google Scholar 

  • Sasaki, M. & Nishida, C., 1980. C-banded heteromorphism in the Z chromosome of the Japanese quail, Coturnix c. japonica. Chrom. Inf. Serv. 29: 21–22.

    Google Scholar 

  • Schodde, R. & McKean, J., 1976. The relationships of some monotypic genera of Australian oscines. Proceedings of the XVIth Int. Ornith. Congress, eds H. J.Frith & J. H.Calaby. Aust. Acad. Sci. Griffin Press Ltd. Netley, Sth Aust. pp. 531–541 (1974).

    Google Scholar 

  • Shoffner, R. N., 1974. Chromosomes of birds. In: H.Busch (ed.). The cell nucleus 3. Academic Press N.Y. pp. 223–261.

    Google Scholar 

  • Shields, G. F., 1976. Meiotic evidence for pericentric inversion plymorphism in Junco (Aves). Can. J. Genet. Cytol. 18: 747–751.

    Google Scholar 

  • Shields, G. F., 1983. Bird chromosomes. In: Current Ornithology, ed. R. F. Johnston. Plenum Publ. Comp., pp. 189–209.

  • Shields, G. F., Jarrell, G. H. & Redruff, E., 1982. Enlarged sex chromosomes of woodpeckers (Piciformes). Auk. 99: 767–770.

    Google Scholar 

  • Slizynski, B. M., 1964. Cytological observations on a duck hybrid; Anas clypeta x Anas penelope. Genet. Res. 5: 441–447.

    Google Scholar 

  • Steiner, J., 1945. Uber letale Fehlentwicklung der zweiten Nachkommenschafts-generation bei tierischen Artbastarden. Arch. J. Klaus.-Stift. VererbForsch. 20: 236–251.

    Google Scholar 

  • Stock, A. D., Arrighi, F. E. & Stefos, K., 1974. Chromosome homology in birds: banding patterns of the chromosomes of the domestic chicken, ring-necked dove, and domestic pigeon. Cytogenet. Cell Genet. 13: 40–418.

    Google Scholar 

  • Stock, A. D. & Bunch, T. D., 1982. The evolutionary implications of chromosome banding pattern homologies in the order Galliformes. Cytogenet. Cell Genet. 34: 136–148.

    Google Scholar 

  • Stock, A. D. & Mengden, G. A., 1975. Chromosome banding pattern conservatism in birds and nonhomology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma 50: 59–77.

    Google Scholar 

  • Takagi, N., 1972. A comparative study of the chromosome replication in 6 species of birds. Jap. J. Genetics 47: 115–123.

    Google Scholar 

  • Takagi, N. & Sasaki, M., 1974. A phylogenetic study of bird karyotypes. Chromosoma 46: 91–120.

    Google Scholar 

  • Tegelström, H. & Ryttman, H., 1981. Chromosomes in birds (Aves): evolutionary implications of macro- and microchromosome number and lengths. Hereditas 94: 225–233.

    Google Scholar 

  • Tegelstrom, H., Ebenhard, T. & Ryttman, H., 1983. Rate of karyotype evolution and speciation in birds. Hereditas. 98: 235–239.

    Google Scholar 

  • VanDongen, M. W. M. & DeBoer, L. E. M., 1984. Chromosome studies of 8 species of parrots of the families Cacatuidae and Psittacidae (Aves:Psittaciformes). Genetica 65: 109–117.

    Google Scholar 

  • Wurster, D. H. & Benirschke, K., 1968. Chromosome studies in the superfamily Bovoidea. Chromosoma 25: 152–171.

    Google Scholar 

  • Wurster, D. H. & Gray, C. W., 1973. Giemsa banding patterns in the chromosomes of twelve species of cats (Felidae). Cytogenet. Cell. Genet. 12: 377–397.

    Google Scholar 

  • Wyles, J. S., Kunkel, J. G. & Wilson, A. C., 1983. Birds, behaviour and anatomical evolution. Proc. natn. Acad. Sci. U.S.A. 80: 4394–4397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christidis, L. Chromosomal evolution within the family Estrildidae (Aves) I. The Poephilae. Genetica 71, 81–97 (1986). https://doi.org/10.1007/BF00058691

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058691

Keywords

Navigation