Skip to main content
Log in

Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Linear alkylbenzene sulphonates are primarily attacked via a hydroxylation of the alkyl chain from the methyl group followed by β-oxidation. The alkyl chain is metabolized by pure cultures to give sulphophenyl carboxylates which accumulate in the medium. In mixed culture, other microorganisms are capable of degrading sulphophenyl carboxylates. Formation of ethylene glycol monosulphates as major products of alkyl ethoxy sulphates demonstrates that the ether bonds are cleaved. The bacteria involved in growing on the alkyl chain are unable to utilize the hydrophilic moiety. This hydrophilic moiety, in turn, is degraded by other microorganisms.

The degradation of alkylphenol ethoxylates and highly branched alcohol ethoxylates proceeds by shortening the polyoxyethylene chain leaving the hydrophobic part of the molecule. The biodegradation of linear alcohol ethoxylates and ethoxylated fatty amines is initiated by a central cleavage or ω-oxidation. Subsequent oxidation of the alkyl chains results in the production of polyethylene glycols and secondary ethoxylated amines. Both polar moieties are metabolized by other microorganisms. Degradation of alkyltrimethylammonium salts and alkylamines is initiated by a cleavage of the C alkyl -N bond. The central fission leads to the formation of alkanals which are readily converted by β-oxidation. The alkyl chain-utilizing bacteria are not able to degrade the methylamines. The methylamines, in turn, are subject to biodegradation by methylotrophs.

The limited metabolic capacities of pure cultures of microorganisms utilizing surfactants point to the requirement of consortia to degrade surfactants completely. Complete degradation of surfactants is accomplished by mixed cultures of microorganisms constructed on the basis of synergistic and commensalistic relationships. However, degradation of a surfactant by one member of a commensalistic consortium may lead to the production of toxic or non-toxic metabolites. Waste water treatment without the build up of such metabolites can be achieved in plants operated with sludge retention times that are suitable for maintaining all microorganisms of the consortium. In contrast, in natural ecosystems the introduction of a surfactant may result in a transient formation of a metabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahel M, Hrsak D & Giger W (1994a) Aerobic transformation of short-chain alkylphenol polyethoxylates by mixed bacterial cultures. Arch. Environ. Contam. Toxicol. 26: 540–548

    Google Scholar 

  • Ahel M, Giger W & Koch M (1994b) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment-I. occurrence and transformation in sewage treatment. Water Res. 28: 1131–1142

    Google Scholar 

  • Ahel M, Giger W & Schaffner C (1994c) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment-II. occurrence and transformation in rivers. Water Res. 28: 1143–1152

    Google Scholar 

  • Baggi G, Beretta L, Galli E, Scolastico & Treccani V (1977) Biodegradation of alkylphenol polyethoxylates. In: Chater KWA & Somervile HJ (Eds) The Oil Industry and Microbial Ecosystems (pp 129–136). Heyden, London

    Google Scholar 

  • Birch RR (1991) Prediction of the fate of detergent chemicals during sewage treatment. J. Chem. Tech. Biotechnol. 50: 411–422

    Google Scholar 

  • Bird JA & Cain RB (1972) Metabolism of linear alkylbenzene sulphonates by a Vibrio sp. Biochem. J. 127: 46p

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 89–129). Marcel Dekker, New York

    Google Scholar 

  • Brunner PH, Capri A, Marcomini A & Giger W (1988) Occurrence and behaviour of linear alkylbenzene sulphonates, nonylphenol, nonylphenol mono, and nonylphenol diethoxylates in sewage and sewage sludge treatment. Water Res. 22: 1465–1472

    Google Scholar 

  • Cain RB & Farr DR (1968) Metabolism of arylsulphonates by microorganisms. Biochem. J. 106: 859–877

    Google Scholar 

  • Cain RB, Willets AJ & Bird JA (1972) Surfactant biodegradation: metabolism and enzymology. In: Walters AH, Hueck EH, van der Plas (Eds) Biodeterioration of Materials, Vol 2 (pp 136–144). Applied Science Publishers Ltd. Barking

    Google Scholar 

  • Cain RB (1981) Microbial degradation of surfactants and builder components. In: Leisinger T, Cook AM, Hutter R & Nuesch J (Eds) Microbial degradation of xenobiotics and recalcitrant compounds. (pp 325–370). Academic Press Inc. New York

    Google Scholar 

  • Cech JS & Chudoba J (1988) Effect of the solids retention time on the rate of biodegradation of organic compounds. Acta Hydrochim. Hydrobiol. 16: 313–323

    Google Scholar 

  • Cavalli L, Gellera A & Landone A (1993) LAS removal and biodegradation in a wastewater treatment plant. Environ. Toxicol. Chem. 12: 1977 1777–1788

    Google Scholar 

  • Colby J & Zatman LJ (1971) The purification and properties of a bacterial triamine dehydrogenase. Biochem. J. 121: 9p-10p

    Google Scholar 

  • Colby J & Zatman LJ (1973) Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem. J. 132: 101–112

    Google Scholar 

  • Dean-Raymond D & Alexander M (1977) Bacterial metabolism of quaternary ammonium compounds. Appl. Environ. Microbiol. 33: 1037–1041

    Google Scholar 

  • Divo C & Cardini G (1980) Primary and total biodegradation of linear alkylbenzene sulphonates. Tenside Deterg. 17: 30–36

    Google Scholar 

  • Dodgson KS, Fitzgerald JW & Payne WJ (1974) Chemically defined inducers of alkylsulphatases present in Pseudomonas C12B. Biochem. J. 138: 53–62

    Google Scholar 

  • Dodgson KS & White GF (1983) Some microbial enzymes involved in the biodegradation of sulfated surfactants. In: Wiseman A (Ed) Topics in Enzyme and Fermentation Biotechnology, Vol 7 (pp 90–155). Ellis Horwood, Chichester

    Google Scholar 

  • Eady RR, Jarman TR & Large PJ (1971) Microbial oxidation of amines. Partial purification of mixed-function secondary-amine oxidase system from Pseudomonas aminovorans that contains an enzymatically active cytochrome-P-420-type haemoprotein. Biochem. J. 125: 449–459

    Google Scholar 

  • eady RR & Large PJ (1971) Microbial oxidation of amines spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AM1. Biochem. J. 123: 757–771

    Google Scholar 

  • Ekelund R, Granmo A, Magnusson K & Berggren M (1993) Biodegradation of 4-nonylphenolin seawater and sediment. Environmental Pollution 79: 59–61

    Google Scholar 

  • Ginkel CG van, Dijk JB van & Kroon AGM (1992) Metabolism of hexadecyltrimethylammonium chloride in Pseudomonas strain B1. Appl. Environ. Microbiol. 58: 3083–3087

    Google Scholar 

  • Ginkel CG van & Kroon AGM (1993) Metabolic pathway for the biodegradation of octadecylbis(2-hydroxyethyl)amine. Biodegradation 3: 435–443

    Google Scholar 

  • Ginkel CG van, Stroo CA & Kroon AGM (1993) Biodegradability of ethoxylated fatty amines and amides and the non-toxicity of their biodegradation products. Tenside Surfact. Deterg. 30 213–216

    Google Scholar 

  • Ginkel CG van (1995) Biodegradation of cationic surfactants. In: Porter MR & Karsa Blackie RD (Eds) Biodegradability of surfactants, (pp 183–203). Blackie Academic & Professional, London

    Google Scholar 

  • Ginkel CG van, Pomper MA, Stroo CA & Kroon AGM (1995) Biodegradation of fatty amines: utilization of the alkyl chain by isolated microorganisms. Tenside Surfact. Deterg. 32 355–359

    Google Scholar 

  • Gledhill WE (1975) Linear alkylbenzene sulfonate: biodegradation and aquatic interactions. Appl. Microbiol. 17: 265–293

    Google Scholar 

  • Gledhill WE, Trehy ML & Carson BD (1991) Comparative biodegradability of anionic surfactants in synthetic and natural test systems. Chemosphere 22: 873–880

    Google Scholar 

  • Griffiths ET, Hales SG, Russell NJ & White GF (1986) Metabolite production during the biodegradation of the surfactant sodium dodecyltriethoxy sulphate under mixed-culture die-away conditions. J. Gen. Microbiol. 132: 963–972

    Google Scholar 

  • Griffiths ET, Hales SG, Russell NJ & White GF (1987) Identification of hydrophobic metabolites formed during biodegradation of alkyl ethoxylate and alkyl ethoxy sufate surfactants by Pseudomonas sp. DES1. Biotechnol. Appl. Biochem. 9: 217–229.

    Google Scholar 

  • Hales SG, Dodgson KS, White GF, Jones N & Watson GS (1982) Initial stages in the biodegradation of the surfactant sodium dodecyltriethoxy sulphate by Pseudomonas sp. strain DES1. Appl. Environ. Microbiol. 44: 790–800

    Google Scholar 

  • Hales SG (1993) Biodegradation of the anionic surfactant dialkyl sulphosuccinate. Environ. Toxicol. Chem. 12: 1821–1828

    Google Scholar 

  • Hirsch LB, Peterson JA & Thompson AA (1971) An N-methylglutamate dehydrogenase from Pseudomonas MA. Arch. Biochem. Biophys. 145: 115–120

    Google Scholar 

  • Hrsak D, Bosnjak M & Johanides V (1982) Enrichment of linear alkylbenzenesulphonate (LAS) degrading bacteria in continuous culture. J. Appl. Bacteriol. 53: 413–422

    Google Scholar 

  • Ichikawa Y, Kitamoto Y & Hosoi N (1978) Degradation of polyethylene glycol dodecyl ethers by a Pseudomonas isolated from activated sludge. J. Ferment. Technol. 56(4): 403–409

    Google Scholar 

  • Jimenez L, Breen A, Thomas N, Federle TW & Sayler GS (1991) Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium. Appl. Environ. Microbiol. 57: 1566–1569

    Google Scholar 

  • Kawai F (1987) The biochemistry of degradation of polyethers. CRC Critical Reviews in Biotechnology 6 (3): 273–307

    Google Scholar 

  • Kravetz L (1990) Biodegradation pathways of nonionic ethoxylates. In: Glass JE & Swift G (Eds) Agricultural and Synthetic Polymers (pp 96–109). American Chemical Society, Washington DC

    Google Scholar 

  • Kravetz L, Salanitro PB, Dorn PB & Guin KF (1991) Influence of hydrophobe type and extent of branching on environmental response factors of nonionic surfactants. J. Am. Oil Chem. Soc. 68: 610–618

    Google Scholar 

  • Kroon AGM, Pomper MA & Ginkel CG van (1994) Metabolism of dodecyldimethylamine by Pseudomonas MA3. Appl. Microbiol. Biotechnol. 42: 134–139

    Google Scholar 

  • Large PJ, Boulton CA & Crabbe MJC (1972) The reduced nicotinamide-adenine dinucleotide phosphate- and oxygen-dependent N-oxygenation of trimethylamine by Pseudomonas aminovorans. Biochem. J. 128: 137p-138p

    Google Scholar 

  • Larson RJ & Games LM (1981) Biodegradation of linear alcohol ethoxylates in natural waters. Environ. Sci. Technol. 15: 1488–1493

    Google Scholar 

  • Leenheer JA, Wershaw RL, Brown PA & Noyes TI (1991) Detection of poly(ethylene glycol) residues from non-ionic surfactants in surface water by 1H and 13C nuclear magnetic resonance spectrometry. Environ. Sci. Technol. 25: 161–168

    Google Scholar 

  • Leidner H, Gloor R & Wuhrmann K (1976) Abbaukinetik linearer Alkylbensolsulfonate. Tenside Detergent 13: 122–130

    Google Scholar 

  • Lewis MA (1990) Chronic toxicities of surfactants and detergent builders to algae; a review and risk assessment. Ecotox. Environ. Saf. 20: 123–140

    Google Scholar 

  • Lijmbach GWM & Brinkhuis E (1973) Microbial degradation of secondary n-alkyl sulfates and secondary alkanols. Antonie van Leeuwenhoek 39: 415–423.

    Google Scholar 

  • Locher HH, Leisinger T & Cook AM (1989) Degradation of p-toluenesulphonic acid via side chain oxidation, desulphonation and meta ring cleavage in Pseudomonas (Comamonas) testosteroni T-2. J. Gen. Microbiol. 135: 1969–1978

    Google Scholar 

  • Locher HH, Leisinger T & Cook AM (1991) 4-Sulphobenzoate-3,4-dioxygenase. Biochem. J. 274: 833–842

    Google Scholar 

  • Maki H, Masuda N, Fujiwara Y, Ike M & Fujita M (1994) Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TRO1. Appl. Environ. Microbiol. 60: 2265–2271

    Google Scholar 

  • McKenna EJ & Kallio RE (1965) The biology of hydrocarbons. Ann. Rev. Microbiol. 19: 183–208

    Google Scholar 

  • Meiberg JBM & Harder W (1978) Aerobic and anaerobic metabolism of trimethylamine, dimethylamine and methylamine in Hyphomicrobium X. J. Gen. Microbiol. 106: 265–276

    Google Scholar 

  • Myers PA & Zatman LJ (1971) The metabolism of trimethylamine-N-oxyde by Bacillus PM6. 121: 10p

  • Nishiyama N, Toshima Y & Ikeda Y (1995) Bodegradation of alkyltrimethylammonium salts in activated sludge. Chemosphere 30: 593–603

    Google Scholar 

  • Osburn QW & Benedict JH (1966) Polyethoxylated alkyl phenols: relationship of structure to biodegradation mechanism. J. Am. Oil Chem. Soc. 43: 141–146

    Google Scholar 

  • Patoczka J & Pulliam GW (1990) Biodegradation and secondary effluent toxicity of ethoxylated surfactants. Water Res. 24: 965–972

    Google Scholar 

  • Payne WJ (1963) Pure culture studies of the degradation of detergent compounds. Biotechnol. Bioeng. 5: 355–365

    Google Scholar 

  • Payne WJ & Feisal VE (1963) Bacterial utilization of dodecyl sulfate and dodecylbenzene sulfonate. Appl. Microbiol. 11: 339–344

    Google Scholar 

  • Payne WJ, Williams JP & Mayberry WR (1965) Primary alcohol sulfatase in a Pseudomonas species. Appl. Microbiol. 13: 698–701

    Google Scholar 

  • Payne WJ, Williams JP & Mayberry WR (1967) Hydrolysis of secondary alcohol sulphate by a bacterial enzyme. Nature 214: 623–624

    Google Scholar 

  • Pirt SJ (1985) Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Pitter P & Fuka T (1979) The problem of ultimate biodegradability of linear alkylbenzene sulphonates. Tenside Deterg. 16: 298–302

    Google Scholar 

  • Powell GE (1985) Stable coexistence of syntrophic associations in continuous culture. J. Chem. Tech. Biotechnol. 35B: 46–56

    Google Scholar 

  • Quick A, Russell NJ, Hales SG & White GF (1994) Biodegradation of sulphosuccinate: direct desulphonation of a secondary sulphonate. Microbiology 140: 2991–2998

    Google Scholar 

  • Romano P & Ranzani M (1992) Anionic surfactants removal and biodegradation in a large treatment plant. Wat. Sci. Tech. 26 9–11: 2547–2550.

    Google Scholar 

  • Sariaslani FS, Harper DB & Higgins IJ (1974) Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor. Biochem. J. 140: 31–45

    Google Scholar 

  • Schöberl P (1982) Mikrobieller Abbau eines Kokosfettalkohol-Ethoxylates durch Acinetobacter lwoffi, Stamm ML. Tenside Surfact. Deterg. 19: 329–339

    Google Scholar 

  • Schöberl P (1988) Okologische relevante Daten von Tensiden in Wasch- und Reinigungsmitteln Tenside Surfact. Deterg. 25: 86–98

    Google Scholar 

  • Sigoillot JC & Nguyen MH (1992) Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater. Appl. Environ. Microbiol. 58: 1308–1312

    Google Scholar 

  • Slater JH & Lovatt D (1984) Biodegradation and the significance of microbial communities. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 439–485). Marcel Dekker Inc. New York

    Google Scholar 

  • Steber J, Wierich P (1985) Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants. Appl. Environ. Microbiol. 49: 530–537

    Google Scholar 

  • Swisher RD (1987) Surfactant degradation. Marcel Dekker Inc. New York

    Google Scholar 

  • Thysse GJE & Wanders TH (1974) Initial steps in the degradation of n-alkane-1-sulphonates by Pseudomonas. Antonie van Leeuwenhoek 40: 25–37

    Google Scholar 

  • Thysse GJE & Wanders TH (1972) Degradation of n-alkane-1-sulfonates by Pseudomonas. Antonie van Leeuwenhoek 38: 53–63

    Google Scholar 

  • Vashon RD & Schwab BS (1982) Mineralization of linear alcohol ethoxylates and linear alcohol ethoxy sulfates at trace concentration in estuarine water. Environ. Sci. Technol 16: 433–436

    Google Scholar 

  • Watson GK & Jones N (1977) The biodegradation of polyethylene glycols by sewage bacteria. Water Res. 11: 95–100

    Google Scholar 

  • Watson GK & Jones N (1979) The microbial degradation of nonionic surfactants. Soc. Gen. Microbiol. Quart. 6: 78–79

    Google Scholar 

  • White GF & Russell NJ (1993) Biodegradation of anionic surfactants and related molecules. In: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp 143–177). Kluwer Academic Press Dordrecht

    Google Scholar 

  • White GF (1993) Bacterial biodegradation of ethoxylated surfactants. Pest. Sci. 37: 159–166

    Google Scholar 

  • Willets AJ & Cain RB (1972a) Microbial metabolism of alkylbenzene sulphonates. Enzyme system of Bacillus species responsible for β-oxidation of the alkyl side chain of alkylbenzene sulphonates. Antonie van Leeuwenhoek 38: 543–555.

    Google Scholar 

  • Willets AJ & Cain RB (1972b) Microbial metabolism of alkylbenzene sulphonates. Bacterial metabolism of undecylbenzene-p-sulphonate and dodecylbenzene-p-sulphonate. Biochem. J. 129: 389–402

    Google Scholar 

  • Willets AJ (1973) Microbial metabolism of alkylbenzene sulphonates. Fungal metabolism of 1-phenylundecane-p-sulphonate and 1-phenyldodecane-p-sulphonate. Antonie van Leeuwenhoek 39: 585–597

    Google Scholar 

  • Willets AJ (1974) Microbial metabolism of alkylbenzene sulphonates. The oxidation of key aromatic compounds by a Bacillus. Antonie van Leeuwenhoek 40: 547–559

    Google Scholar 

  • Williams GR & Callely AG (1982) The biodegradation of diethanolamine and triethanolamine in a Gram-negative rod. J. Gen. Microbiol. 128: 1203–1209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Ginkel, C.G. Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7, 151–164 (1996). https://doi.org/10.1007/BF00114627

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114627

Key words

Navigation