Skip to main content
Log in

Sound conversion phenomena at the free surface of liquid helium. I. Calculation of the coefficients of reflection, transmission, and transformation of sound waves incident on the liquid-vapor interface of helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

On the basis of a set of boundary conditions describing quite generally mass and energy transport processes across the free surface of helium II, the acoustic coefficients of reflection, transmission, and transformation of first sound, second sound, and the sound wave propagating in the vapor are calculated in the case of perpendicular incidence of sound waves against the liquid-vapor phase boundary. Considering rigorously the influences of the Onsager surface coefficients, the isobaric thermal expansion coefficients, and the thermal conductivities of the liquid and the vapor, we derive sets of equations from which the acoustic coefficients are determined numerically. For estimations, simple explicit formulas of the acoustic coefficients are given. It is shown that the evaporation and energy transport processes occurring at the free surface of helium II due to the incidence of sound waves may be connected with appreciable energy dissipation. The surface absorption coefficients of first, second, and gas sound waves are deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Atkins, Phys. Rev. 113, 962 (1959).

    Google Scholar 

  2. J. Woods Halley, Phys. Rev. A 5, 1807 (1972).

    Google Scholar 

  3. K. A. Pickar and K. R. Atkins, Phys. Rev. 178, 399 (1969).

    Google Scholar 

  4. D. Bergman, Phys. Rev. 188, 370 (1969); Phys. Rev. A 3, 2058 (1971).

    Google Scholar 

  5. S. Putterman, D. Heckerman, R. Rosenbaum, and G. A. Williams, Phys. Rev. Lett. 42, 580 (1979).

    Google Scholar 

  6. G. A. Williams, R. Rosenbaum, and I. Rudnick, Phys. Rev. Lett. 42, 1282 (1979).

    Google Scholar 

  7. G. J. Jelatis, J. A. Roth, and J. D. Maynard, Phys. Rev. Lett. 42, 1285 (1979).

    Google Scholar 

  8. J. R. Pellam, Phys. Rev. 73, 608 (1948).

    Google Scholar 

  9. R. B. Dingle, Proc. Phys. Soc. A 61, 9 (1948).

    Google Scholar 

  10. D. M. Chernikova, Zh. Eksp. Teor. Fiz. 47, 537 (1964) [Sov. Phys.—JETP 20, 358 (1965)].

    Google Scholar 

  11. G. H. Hunter and D. V. Osborne, J. Phys. C: Solid State Phys. 2, 2414 (1969).

    Google Scholar 

  12. D. Brandt and K. Keck, Phys. Lett. 32A, 61 (1970); in Proc. 12th Int. Conf. Low Temp. Phys., E. Kanda, ed. (Academic Press of Japan, Kyoto, 1971), p. 117.

    Google Scholar 

  13. F. I. Buchholz, D. Brandt, and H. Wiechert, Phys. Lett. A 35, 471 (1971).

    Google Scholar 

  14. H. Wiechert and F. I. Buchholz, in Liquid and Solid Helium (Proc. EPS Topical Conf., Haifa, 1974), Ch. Kuper, S. G. Lipson, and M. Revzen, eds. (Israel Universities Press, Jerusalem, and Wiley, New York, 1975), p. 293.

    Google Scholar 

  15. K. R. Atkins, B. Rosenbaum, and H. Seki, Phys. Rev. 113, 751 (1959).

    Google Scholar 

  16. D. V. Osborne, Proc. Phys. Soc. 80, 103 (1962).

    Google Scholar 

  17. L. Meinhold-Heerlein, Habilitationsschrift, Universität Mainz (1971); Phys. Rev. A 8, 2574 (1973).

  18. H. Wiechert, J. Phys. C: Solid State Phys. 9, 553 (1976).

    Google Scholar 

  19. R. Schmidt, Ann. Phys. (Leipzig) 34, 52 (1977).

    Google Scholar 

  20. D. V. Osborne, private communication (1974).

  21. J. W. Cipolla, Jr., H. Lang, and S. K. Loyalka, J. Chem. Phys. 61, 69 (1974).

    Google Scholar 

  22. I. M. Khalatnikov, Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959).

    Google Scholar 

  24. E. Lifshitz, J. Phys. 8, 110 (1944).

    Google Scholar 

  25. E. C. Kerr and R. D. Taylor, Ann. Phys. (N.Y.) 26, 292 (1964).

    Google Scholar 

  26. A. D. B. Woods and A. C. Hollis Hallett, Can. J. Phys. 41, 596 (1963).

    Google Scholar 

  27. V. P. Peshkov, Zh. Eksp. Teor. Fiz. 38, 799 (1960) [Sov. Phys.—JETP 11, 580 (1960)].

    Google Scholar 

  28. H. C. Kramers, J. D. Wasscher, and C. J. Gorter, Physica 18, 329 (1952).

    Google Scholar 

  29. R. W. Hill and O. V. Lounasmaa, Phil. Mag. 2, 143 (1957).

    Google Scholar 

  30. M. J. Buckingham and W. M. Fairbank, in Progress in Low Temperature Physics, Vol. III, C. J. Gorter, ed. (North-Holland, Amsterdam, 1961), p. 80.

    Google Scholar 

  31. C. E. Chase, Phys. Fluids 1, 193 (1958).

    Google Scholar 

  32. M. Barmatz and I. Rudnick, Phys. Rev. 170, 224 (1968).

    Google Scholar 

  33. R. Williams, S. E. A. Beaver, J. C. Fraser, R. S. Kagiwada, and I. Rudnick, Phys. Lett. 29A, 279 (1969).

    Google Scholar 

  34. I. M. Khalatnikov, Fortschr. Physik 5, 269 (1957).

    Google Scholar 

  35. K. N. Zinov'eva, Zh. Eksp. Teor. Fiz. 31, 31 (1956) [Sov. Phys.—JETP 4, 36 (1957)].

    Google Scholar 

  36. H. van Dijk and M. Durieux, Physica 24, 1 (1958).

    Google Scholar 

  37. R. A. Erickson and L. D. Roberts, Phys. Rev. 93, 957 (1954).

    Google Scholar 

  38. A. van Itterbeek and W. de Laet, Physica 24, 59 (1958).

    Google Scholar 

  39. G. Cataland and H. Plumb, J. Res. NBS 69A, 531 (1965).

    Google Scholar 

  40. D. T. Grimsrud and J. H. Werntz Jr., Phys. Rev. 157, 181 (1967).

    Google Scholar 

  41. J. B. Ubbink and W. J. de Haas, Physica 10, 465 (1943).

    Google Scholar 

  42. K. Fokkens, W. Vermeer, K. W. Taconis, and R. de Bruyn Ouboter, Physica 30, 2153 (1964).

    Google Scholar 

  43. H. van Dijk, M. Durieux, J. R. Clement, and J. K. Logan, J. Res. NBS 64A, 4 (1960).

    Google Scholar 

  44. E. Skudrzyk, The Foundations of Acoustics (Springer-Verlag, Wien, New York, 1971), p. 297.

    Google Scholar 

  45. D. Brandt, Dissertation, Universität Mainz (1970).

  46. D. O. Edwards, P. Fatouros, G. G. Ihas, P. Mrozinski, S. Y. Shen, F. M. Gasparini, and C. P. Tam, Phys. Rev. Lett. 34, 1153 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiechert, H., Buchholz, F.I. Sound conversion phenomena at the free surface of liquid helium. I. Calculation of the coefficients of reflection, transmission, and transformation of sound waves incident on the liquid-vapor interface of helium. J Low Temp Phys 39, 623–647 (1980). https://doi.org/10.1007/BF00114898

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114898

Keywords

Navigation