Skip to main content
Log in

A thermal activation model for noise in the dc SQUID

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A thermal activation model is described for the dc SQUID. The equations of motion for the junction phase differences are shown to develop in time like the coordinates of a particle performing Brownian motion in a viscous medium in a two-dimensional potential field. Expressions are derived relating the average voltage, transfer function, and current and voltage noise spectral densities to the features of the potential determined by the device parameters. Comparison with a numerical simulation is presented. Calculations of the current noise as a function of loop inductance and critical current asymmetry are performed. An anomalously large current noise is predicted at certain values of the device characteristics. The correlation spectral density is also calculated as a function of loop inductance, and related to the optimal source resistance for a tuned SQUID amplifier. A theory of low-frequency noise sources in the SQUID is developed in a fashion compatible with the thermal activation model. Equilibrium temperature fluctuations as a possible source of 1/f noise in the SQUID are discussed. A scheme for optimizing the resolution at low frequencies is presented. Proper exploitation of low-capacitance Pb-PbOx-Pb junction technology is shown to increase the resolution at 1 Hz by at least a factor of 8, provided that the temperature fluctuations are the dominant source of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kurkijarvi, Phys. Rev. B 6, 832 (1972).

    Google Scholar 

  2. T. A. Fulton, IEEE Trans. Mag. 11, 749 (1975).

    Google Scholar 

  3. T. A. Fulton, Phys. Rev. B 7, 1189 (1973).

    Google Scholar 

  4. T. A. Fulton, Phys. Rev. B 9, 4760 (1974).

    Google Scholar 

  5. Patrick A. Lee, J. Appl. Phys. 42, 325 (1970).

    Google Scholar 

  6. A. N. Vystavkin, V. N. Gubankov, L. S. Kuzmin, K. K. Likharev, V. V. Migulin, and V. K. Semenov, Rev. Phys. Appl. 9, 79 (1974).

    Google Scholar 

  7. C. D. Tesche and J. Clarke, J. Low Temp. Phys. 29, 301 (1977).

    Google Scholar 

  8. C. D. Tesche and J. Clarke, J. Low Temp. Phys. 37, 397 (1979).

    Google Scholar 

  9. Richard F. Voss and John Clarke, Phys. Rev. B 13, 556 (1976).

    Google Scholar 

  10. John Clarke and Gilbert Hawkins, Phys. Rev. B 14, 2826 (1976).

    Google Scholar 

  11. M. B. Ketchen and C. C. Tsuei, in Proceedings of the 2nd International Conference on Superconducting Quantum Devices (West Berlin, May 1980), to be published.

  12. Claudia D. Tesche, Ph.D. thesis, University of California, Berkeley (1978).

    Google Scholar 

  13. W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).

    Google Scholar 

  14. D. E. McCumber, J. Appl. Phys. 39, 3113 (1968).

    Google Scholar 

  15. Herbert B. Callen and Theodore A. Welton, Phys. Rev. 83, 34 (1951).

    Google Scholar 

  16. Richard F. Voss, to be published.

  17. H. A. Kramers, Physica 7, 284 (1940).

    Google Scholar 

  18. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Google Scholar 

  19. D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events (Wiley, New York, 1966), Chapter 4.

    Google Scholar 

  20. H. C. Brinkman, Physica 22, 149 (1956).

    Google Scholar 

  21. K. K. Likharev and V. K. Semenov, Zh. Eksp. Teor. Fiz. Pisma 15, 625 (1972).

    Google Scholar 

  22. Stefan Machlup, J. Appl. Phys. 25, 341 (1954).

    Google Scholar 

  23. J. Clarke, C. D. Tesche, and R. D. Giffard, J. Low Temp. Phys. 37, 405 (1979).

    Google Scholar 

  24. W. H. Louisell, A. Variv, and A. E. Siegman, Phys. Rev. 124, 1646 (1961).

    Google Scholar 

  25. H. Heffner, Proc. IRE 50, 1604 (1962).

    Google Scholar 

  26. J. C. Gallop and B. W. Petley, J. Phys. E: Sci. Instr. 9, 417 (1976).

    Google Scholar 

  27. J. Clarke, W. M. Goubau, and M. B. Ketchen, J. Low Temp. Phys. 25, 99 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by ONR under contract #NR319-154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesche, C.D. A thermal activation model for noise in the dc SQUID. J Low Temp Phys 44, 119–147 (1981). https://doi.org/10.1007/BF00115079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115079

Keywords

Navigation