Skip to main content
Log in

Drop size dependent sulfate distribution in a growing cloud

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A simple entraining air parcel model including cloud microphysical and chemical processes is used to calculate the distribution of sulfate over the drop sizes under continental background conditions. Under these conditions the aerosol sulfate is predicted to contribute the largest amount of aqueous sulfate in cloud drops. The sulfate produced by oxidation is found to contribute significantly in drops larger than 10 μm radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers G.P. and Larson T.V. (1990) ‘Numerical study of droplet size dependent chemistry in oceanic, wintertime stratus cloud at southern mid-latitudes’. J. Atm. Chem. 11, 143–167.

    Article  Google Scholar 

  • Durham J.L., Overton J.H. and Aneja V.P. (1981) ‘Influence of gaseous nitric acid on sulfate production and acidity in rain’, Atm. Env. 15, 1059–1068.

    Article  Google Scholar 

  • Erickson R.E., Yates L.M., Clard R.L. and McEwen C.M. (1977) ‘The reaction of sulfur dioxide with ozone in water and its possible atmospheric significance’, Atm. Env. 11, 813–817.

    Article  Google Scholar 

  • Flossmann A.I., Hall W.D. and Pruppacher H.R. (1985) ‘A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops’, J. Atm. Sci. 42, 583–606.

    Article  Google Scholar 

  • Flossmann A.I., Pruppacher H.R. and Topalian J.H. (1987) ‘A theoretical study of the wet removal of atmospheric pollutants. Part II: The uptake and redistribution of (NH4)SO4 particles and SO2 gas simultaneously scavenged by growing cloud drops’, J. Atm. Sci. 44, 2912–2923.

    Article  Google Scholar 

  • Hall W.D. (1980) ‘A detailed microphysical model within a two-dimensional framework: Model description and preliminary results’, J. Atm. Sci. 37, 2486–2507.

    Article  Google Scholar 

  • Hänel G. (1987) ‘The role of aerosol properties during the condensational stage of cloud: A reinvestigation of numerics and microphysics’, Beitr. Phys. Atmosph. 60, 321–339.

    Google Scholar 

  • Hegg D.A. and Larson T.V. (1990) ‘The effects of microphysical parameterisation on model predictions of sulfate production in clouds’, Tellus 42B, 272–284.

    Article  Google Scholar 

  • Hegg D.A., Rutledge S.A. and Hobbs P.V. (1986) ‘A numerical model for sulfur and nitrogen scavenging in narrow cold-frontal rainbands. 2. Discussion of chemical fields’, J. Geophys. Res. 91, 14403–14416.

    Article  Google Scholar 

  • Hoffmann M.R. (1986) ‘On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone’, Atm. Env. 20, 1145–1154.

    Article  Google Scholar 

  • Iribarne J.V. and Cho H.R. (1989) ‘Models of cloud chemistry’, Tellus 41B, 2–23.

    Article  Google Scholar 

  • Leaitch W.R., Strapp J.W., Wiebe H.A., Anlauf K.G. and Isaac G.A. (1986) ‘Chemical and microphysical studies of nonprecipitating summer cloud in Ontario, Canada’, J. Geophys. Res. 91, 11821–11831.

    Article  Google Scholar 

  • Lee I.Y. (1986) ‘Numerical simulation of chemical and physical properties of clouds’, Atm. Env. 20, 767–771.

    Article  Google Scholar 

  • Lee I.Y., Hänel G. and Pruppacher H.R. (1980) ‘A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles’, J. At. Sci. 37, 1839–1853.

    Article  Google Scholar 

  • Martin L.R. and Damschen D.E. (1981) ‘Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH’, Atm. Env. 15, 1615–1621.

    Article  Google Scholar 

  • Nair S.K. and Peters L.K. (1989) ‘Studies on non-precipitating cumulus cloud acidification’, Atm. Env. 23, 1399–1423.

    Article  Google Scholar 

  • Noone K.J., Charlson R.J., Covert D.S., Ogren J.A. and Heintzenberg J. (1988) ‘Cloud droplets: Solute concentration is size dependent’, J. Geophys. Res. 93, 9477–9482.

    Article  Google Scholar 

  • Ogren J.A., Heintzenberg J. Zuber A. and Noone K.J. (1989) ‘Measurements of the size-dependence of solute concentrations in cloud droplets’, Tellus 41B, 24–31.

    Article  Google Scholar 

  • Pandis S.N. and Seinfeld J.H. (1989) ‘Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry’, J. Geophys. Res. 94, 1105–1126.

    Article  Google Scholar 

  • Pandis S.N., Seinfeld J.H. and Pilinis C. (1990) ‘Chemical composition differences in fog and cloud droplets of different sizes’, Atm. Env. 24A, 1957–1969.

    Article  Google Scholar 

  • Pruppacher H.R. and Klett J.D. (1978) Microphysics of clouds and precipitation, D. Reidel, Dordrecht

    Book  Google Scholar 

  • Saxena P. and Seigneur C. (1987) ‘On the oxidation of SO2 to sulfate in atmospheric aerosols’, Atm. Env. 21, 807–812.

    Article  Google Scholar 

  • Seidl W. (1989) ‘Ionic concentrations and initial S(IV)-oxidation rates in droplets during the condensational stage of cloud’, Tellus 41B, 32–50.

    Article  Google Scholar 

  • Seigneur C. (1987) ‘Computer simulation of air pollution chemistry’, Env. Softw. 2, 116–127.

    Article  Google Scholar 

  • Taylor G.R. (1989) ‘Sulfate production and deposition in midlatitude continental cumulus clouds. Part I: Cloud model formulation and base run analysis’, J. Atm. Sci. 46, 1971–1990.

    Article  Google Scholar 

  • Tremblay A. (1987) ‘Cumulus cloud transport, scavenging and chemistry: observations and simulations’, Atm. Env. 21, 2345–2364.

    Article  Google Scholar 

  • Twohy C.H., Austin P.H. and Charlson R.J. (1989) ‘Chemical consequences of the initial diffusional growth of cloud droplets: a clean marine case’, Tellus 41B, 51–60.

    Article  Google Scholar 

  • Walcek C.J. and Taylor G.R. (1986) ‘A theoretical method for computing vertical distributions of acidity and sulfate production within cumulus clouds’, J. Atm. Sci. 43, 339–355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelofs, G.J.H. Drop size dependent sulfate distribution in a growing cloud. J Atmos Chem 14, 109–118 (1992). https://doi.org/10.1007/BF00115227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115227

Keywords

Navigation