Skip to main content
Log in

Ultrasonic dispersion and attenuation near the liquid-gas critical point of 3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We report ultrasonic dispersion and attenuation measurements near the liquid-gas critical point of 3He at frequencies from 0.5 to 5.0 MHz and densities from 0.89ϱ c to 1.15ϱ c . The singular part of the sound attenuation and the dispersion on the critical isochore ϱ c = 0.0414 g/cm3 are analyzed in terms of the Kawasaki-Mistura theory. If the Ornstein-Zernike order parameter correlation function is assumed in the analysis, good agreement with our data is achieved, except close to the critical temperature T cin the high-frequency region, where ω* = ω/ωD 1. Here Ω D is the characteristic relaxation rate of the critical fluctuations. From a fit of the theory to our data, and assuming the inverse correlation length κ is expressed by κ = κ0ɛΝ, where ɛ = (T−Tc)/Tc with Ν = 0.63, we obtain κ0 = (3.9 ± 0.4) × 109 m−1. It is found that a more realistic form of the correlation function, as proposed by Fisher and Langer and calculated by Bray, yields even poorer agreement with out data than does the classical Ornstein-Zernike form for Ω* > 10. The same difficulties appear in the analysis of the available data for xenon. Thus, the present mode coupling theory is unable to satisfactorily describe the acoustic experiments on fluids near the liquid-vapor critical point over a large range of reduced frequencies Ω*. In the appendix, we reanalyze previously reported ultrasonic data in 4He, taking into account the nonsingular term of the thermal conductivity. Using Ν = 0.63, we obtain a good fit of the experiment to the theory in the hydrodynamic region with κ0 = (5.5 ± 1) × 109 m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kawasaki, Phys. Rev. A 1, 1750 (1970).

    Google Scholar 

  2. D. Roe, B. Wallace, and H. Meyer, J. Low Temp. Phys. 16, 51 (1974).

    Google Scholar 

  3. M. Barmatz, Phys. Rev. Lett. 24, 651 (1970); M. Barmatz, in Proc. Battelle Colloq. on Crit. Phen. (Gstaad, 1970) (McGraw-Hill, New York, 1972), p. 541.

    Google Scholar 

  4. S. Kagoshima, K. Ohbayashi, and A. Ikushima, J. Low Temp. Phys. 11, 765 (1973).

    Google Scholar 

  5. A. Tominaga, A. Nakazawi, and Y. Narahara, Phys. Lett. 46A, 383 (1974); and A. Tominaga, J Low Temp. Phys. 16, 571 (1974).

    Google Scholar 

  6. K. Ohbayashi and A. Ikushima, J. Low Temp. Phys. 15, 33 (1974).

    Google Scholar 

  7. C. Garland and R. Williams, Phys. Rev. A 10, 1328 (1974).

    Google Scholar 

  8. C. Garland, D. Eden, and L. Mistura, Phys. Rev. Lett. 25, 1161 (1970).

    Google Scholar 

  9. D. Eden, C. Garland, and J. Thoen, Phys. Rev. Lett. 28, 726 (1972).

    Google Scholar 

  10. P. Mueller, D. Eden, C. Garland, and R. Williamson, Phys. Rev. A 6, 2272 (1972).

    Google Scholar 

  11. J. Thoen and C. Garland, Phys. Rev. A 10, 1311 (1974).

    Google Scholar 

  12. D. Henry, H. Swinney, and H. Cummins, Phys. Rev. Lett. 25, 1170 (1970).

    Google Scholar 

  13. D. Cannell and G. Benedek, Phys. Rev. Lett. 25, 1157 (1970).

    Google Scholar 

  14. H. Cummins and H. Swinney, Phys. Rev. Lett. 25, 1165 (1970).

    Google Scholar 

  15. L. Mistura, in International School of Physics ‘Enrico Fermi’ Course LI, M. S. Green, ed. (Academic Press, New York, 1971), p. 563.

    Google Scholar 

  16. P. Tartaglia and J. Thoen, Phys. Rev. A 11, 2061 (1975).

    Google Scholar 

  17. K. Kawasaki, Phys. Rev. A 3, 1097 (1971).

    Google Scholar 

  18. M. E. Fisher and J. Langer, Phys. Rev. Lett. 20, 665 (1968).

    Google Scholar 

  19. R. Brown and H. Meyer, Phys. Rev. A 6, 364 (1972).

    Google Scholar 

  20. A. Bray, Phys. Lett. A 55, 453 (1976); Phys. Rev. B 14, 1248 (1976).

    Google Scholar 

  21. M. Fisher and A. Aharony, Phys. Rev. Lett. 31, 1238 (1973).

    Google Scholar 

  22. R. Wanner, K. Mueller, and H. Fairbank, J. Low Temp. Phys. 11, 363 (1973).

    Google Scholar 

  23. D. Grimsrud and J. Werntz, Phys. Rev. 157, 181 (1967).

    Google Scholar 

  24. B. Wallace and H. Meyer, Phys. Rev. A 2, 1563 (1970).

    Google Scholar 

  25. R. Behringer, T. Doiron, and H. MeyerJ. Low Temp. Phys. 24, 315 (1976).

    Google Scholar 

  26. P. Hohenberg and M. Barmatz, Phys. Rev. A 6, 289 (1972).

    Google Scholar 

  27. P. Schofield, J. Litster, and J. Ho, Phys. Rev. Lett. 23, 1098 (1969).

    Google Scholar 

  28. M. E. Fisher, J. Math. Phys. 5, 944 (1969).

    Google Scholar 

  29. K. Kawasaki, Ann. Phys. (N. Y.) 61, l (1970).

    Google Scholar 

  30. K. Kawasaki and S. Lo, Phys. Rev. Lett. 29, 48 (1972).

    Google Scholar 

  31. H. Swinney and D. Henry, Phys. Rev. A 8, 2586 (1974).

    Google Scholar 

  32. C. Tracey, Phys. Lett. 48A,9 (1974).

    Google Scholar 

  33. J. Kerrisk and W. Keller, Phys. Rev. 177, 341 (1969).

  34. J. V. Sengers and J. H. M. Levelt Sengers, in Progress in Liquid Physics, C. A. Croxton, ed. (Wiley, New York, 1976).

    Google Scholar 

  35. K. Ohbayashi and A. Ikushima, J. Low Temp. Phys. 19, 449 (1974).

    Google Scholar 

  36. M. E. Fisher, private communication.

  37. D. Sarid and D. S. Cannell, Phys. Rev. A 15, 735 (1977).

    Google Scholar 

  38. F. van Kann, Ph.D. Thesis, Univ. of Western Australia, unpublished (1975).

  39. M. Moore, D. Jasnow, and M. Wortis, Phys. Rev. Lett. 22, 940 (1969).

    Google Scholar 

  40. H. Kierstead, Phys. Rev. A 3, 329 (1971).

    Google Scholar 

  41. J. Ubbink, Physica 13, 659 (1947).

    Google Scholar 

  42. A. Koenig, Ph.D. diss., Duke Univ. unpublished (dy1974).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roe, D.B., Meyer, H. Ultrasonic dispersion and attenuation near the liquid-gas critical point of 3He. J Low Temp Phys 30, 91–115 (1978). https://doi.org/10.1007/BF00115518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115518

Keywords

Navigation