Skip to main content
Log in

Pair susceptibility and mode propagation in superconductors: A microscopic approach

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We derive the full microscopic set of equations governing small oscillations: (1) in the magnitude of the superconducting order parameter (the Schmid mode), (2) the phase of the order parameter in a neutral superfluid (the Anderson-Bogoliubov mode), and (3) the coupled oscillations in the phase of the order parameter and in the electric field (the transverse, or Carlson-Goldman mode). The derivation is not limited by the restrictions of previous papers. No limitations are required for the magnitude of the frequency, the concentration of impurities, or the magnitude of the temperature. Special attention is given to the Carlson-Goldman (CG) mode, whose dispersion law frequency (Ω) vs. wave vector (k) and damping is calculated. The velocity of the CG mode in the propagation region % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaai% 4laiaacYhacaqGRbGaaeiFaaaa!3B5A!\[\omega /|{\text{k|}}\] is found to equal % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab2% dacaqGBbGaaeOmaiabfs5aejaabseadaWgaaWcbaGaeq4Xdmgabeaa% kiaacIcacaaIYaGaeqiWdaNaaeivaiabes8a0jaabMcacaqGDbaaaa!448D!\[{\text{c = [2}}\Delta {\text{D}}_\chi (2\pi {\text{T}}\tau {\text{)]}}\], where D is the diffusion constant and χ is the function appearing in the theory of superconducting alloys. In the dirty (l « ξ0) and clean (l ≫ ξ0) limits, this expression reduces to those previously derived by Schmid and Schön, and by Artemenko and Volkov, respectively. At large values of k, the frequency of the CG mode approaches a limiting value of 2δ. The damping is small in this limit and tends to zero as ¦k¦ increases. p ]Our results are obtained by calculating the linear response of a superconductor to a perturbation in the magnitude and phase of the order parameter, and the electromagnetic potentials. The response of the superconductor to these perturbations is calculated by properly continuing the thermodynamic perturbation function of linear response from imaginary frequencies to the real ones, then inserting into the self-consistency BCS equation and Poisson's equation. The derivation is based on the self-consistent BCS scheme. No kinetic equations are introduced at any stage of the calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Carlson and A. M. Goldman, Phys. Rev. Lett. 31, 880 (1973); R. V. Carlson and A. M. Goldman, Phys. Rev. Lett. 34, 11 (1975).

    Google Scholar 

  2. R. A. Ferrell, J. Low Temp. Phys. 1, 423 (1969).

    Google Scholar 

  3. D. J. Scalapino, Phys. Rev. Lett. 24, 1052 (1970).

    Google Scholar 

  4. I. O. Kulik, Zh. Eksp. Teor. Fiz. Pisma 10, 488 (1969) [JETP Lett. 10, 313 (1970)]; I. O. Kulik, Zh. Eksp. Teor. Fiz. 59, 937 (1970) [Sov. Phys.—JETP 32, 510 (1971)].

    Google Scholar 

  5. J. T. Anderson, R. V. Carlson, and A. M. Goldman, J. Low Temp. Phys. 8, 29 (1972).

    Google Scholar 

  6. E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966).

    Google Scholar 

  7. C. Caroli and K. Maki, Phys. Rev. 164, 591 (1967).

    Google Scholar 

  8. A. Schmid, Phys. Kond. Mater. 5, 302 (1966).

    Google Scholar 

  9. L. P. Gorkov and G. M. Eliasberg, Zh. Eksp. Teor. Fiz. 54, 612 (1968) [Sov. Phys.—JETP 27, 328 (1968)].

    Google Scholar 

  10. N. N. Bogoliubov, V. V. Tolmatschev, and D. V. Shirkov, New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959); V. M. Galitskii, Zh. Eksp. Teor. Fiz. 34, 1011 (1958) [Sov. Phys.—JETP 34, 698 (1958)].

    Google Scholar 

  11. P. W. Anderson, Phys. Rev. 112, 1900 (1959).

    Google Scholar 

  12. K. Maki and H. Sato, J. Low Temp. Phys. 16, 557 (1974).

    Google Scholar 

  13. G. Brieskorn, M. Dinter, and H. Schmidt, Sol. St. Comm. 15, 757 (1974).

    Google Scholar 

  14. A. Schmid and G. Schön, Phys. Rev. Lett. 34, 941 (1975).

    Google Scholar 

  15. A. Schmid and G. Schön, J. Low Temp. Phys. 20, 207 (1975).

    Google Scholar 

  16. A. J. Bray and H. Schmidt, J. Low Temp. Phys. 21, 669 (1975).

    Google Scholar 

  17. S. N. Artemenko and A. F. Volkov, Zh. Eksp. Teor. Fiz. 69, 1764 (1975) [Sov. hys.—JETP 42, 896 (1976)].

    Google Scholar 

  18. O. Entin-Wohlman and R. Orbach, Ann. Phys. (NY) 116, 35 (1978).

    Google Scholar 

  19. A. Schmid, Phys. Kond. Mater. 8, 129 (1968).

    Google Scholar 

  20. A. F. Volkov and S. M. Kogan, Zh. Eksp. Teor. Fiz. 65, 2038 (1973) [Sov. Phys.—JETP 38, 1018 (1974)].

    Google Scholar 

  21. I. O. Kulik, Fiz. Nizk. Temp. 2, 962 (1976) [Sov. Phys.—Low Temp. Phys. 2, 471 (1976)].

    Google Scholar 

  22. J. R. Waldram, Proc. Roy. Soc. (Lond) A 345, 231 (1975).

    Google Scholar 

  23. S. N. Artemenko, A. F. Volkov, and A. V. Zaitsev, Zh. Eksp. Teor. Fiz. Pisma 27, 122 (1978) [JETP Lett. 27, 113 (1978)].

    Google Scholar 

  24. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, 1963).

  25. A. G. Aronov and V. L. Gurevitch, Zh. Eksp. Teor. Fiz. 70, 955 (1976) [Sov. Phys.—JETP 43, 498 (1976)].

    Google Scholar 

  26. L. P. Gorkov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys.—JETP 36, 1364 (1959)].

    Google Scholar 

  27. I. Schuller and K. E. Gray, Phys. Rev. Lett. 36, 429 (1976).

    Google Scholar 

  28. Y. N. Ovchinnikov, J. Low Temp. Phys. 31, 785 (1978).

    Google Scholar 

  29. O. Entin-Wohlman and R. Orbach, Ann. Phys. (NY), 122, 64 (1979).

    Google Scholar 

  30. O. Entin-Wohlman and R. Orbach, Phys. Rev. B 21, 5172 (1980).

    Google Scholar 

  31. V. M. Dmitriev and E. V. Khristenko, Fiz. Nizkh. Temp. 3, 1210 (1977) [Sov. Phys.—Low. Temp. Phys. 3, 587 (1977)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the U.S. National Science Foundation, grant DMR 78-10312, and through one of the authors (R.O.), the U.S. Office of Naval Research, Contract number N00014-75-C-0245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulik, I.O., Entin-Wohlman, O. & Orbach, R. Pair susceptibility and mode propagation in superconductors: A microscopic approach. J Low Temp Phys 43, 591–620 (1981). https://doi.org/10.1007/BF00115617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115617

Keywords

Navigation