Skip to main content
Log in

Numerical simulation of sea breezes over the Auckland region, New Zealand — Air quality implications

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The air pollution meteorology of a typical sea breeze day is investigated using the Colorado State University Mcsoscale Model. Results are qualitatively compared with observations and reveal a complex wind field characterised by migratory sea breeze convergence zones. Associated with these features, the model predicts enhanced upward vertical velocities and ‘doming’ of the planetary boundary layer (PBL). The diurnal variation in PBL depth is shown to vary markedly at different locations and is dependent on position in relation to the migratory convergence zones. These complex spatial and temporal variations in the wind and PBL depth have important implications for air quality in Auckland and confirm that simple Gaussian or box trajectory approaches are inappropriate for air quality assessment in such environments. The inclusion in the model of variable surface properties, a dynamic synoptic state and improved PBL parameterisations, as well as coupling with a Lagrangian particle model, are recommended if the model is to be used as a tool for further air quality studies in the Auckland area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbs, D. J.: 1986, ‘Sea Breeze Interactions along Concave Coastline in Southern Australia: Observation and Numerical Model Study’, Monthly Weather Rev. 114, 831–848.

    Google Scholar 

  • Arritt, R. W., Pielke, R. A., and Segal, M.: 1988, ‘Variations of Sulphur Dioxide Deposition Velocity Resulting from Terrain-Forced Mesoscale Circulations’, Atm. Environ. 22(4), 715–723.

    Google Scholar 

  • Brasell, M. R.: 1982, ‘Photochemical Oxidant Formation in the Auckland Region’, Clean Air (Feb), 4–9.

  • Capuano, M. E. and Atchison, M. K.: 1984, ‘Worldwide Mean Mixed Layer Heights Based on an 8 Year Study Period’, Proc. Fourth Joint Conference on Applications of Air Pollution Meteorology, October 16–19, 1984, Portland, Oregon. American Meteorological Society, pp. 198–201.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three Dimensional Numerical Study of the Height and Mean Structure of a Heated Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Edinger, J. G.: 1959, ‘Changes in the Depth of the Marine Layer over the Los Angeles Basin’, J. Meteorol. 16, 219–226.

    Google Scholar 

  • Glendening, J. W., Ulrickson, B. L., and Businger, J. A.: 1986, ‘Mesoscale Variability of Boundary Layer Properties in the Los Angeles Basin’, Monthly Weather Rev. 114, 2537–2549.

    Google Scholar 

  • Hanna, S. R.: 1987, ‘An Empirical Formula for the Height of the Coastal Internal Boundary Layer’, Boundary-Layer Meteorol. 40, 205–207.

    Google Scholar 

  • Hjelmfelt, M. R.: 1982, ‘Numerical Simulation of the Effects of St Louis on Mesoscale Boundary Layer Airflow and Vertical Air Motion’, J. Appl. Meteorol. 21(9), 1239–1257.

    Google Scholar 

  • Holzworth, G. C.: 1967, ‘Mixing Depths, Wind Speeds and Air Pollution Potential for Selected Locations in the United States’, J. Appl. Meteorol. 6, 1039–1044.

    Google Scholar 

  • Hsu, S. A.: 1988, Coastal Meteorology, Academic, London, 260 pp.

    Google Scholar 

  • Keen, C. S. and Lyons, W. A.: 1978, ‘Lake/Land Breeze Circulations on the Western Shores of Lake Michigan’, J. Appl. Meteorol. 17, 1843–1855.

    Google Scholar 

  • Klemp, J. B. and Lilly, D. K.: 1978, ‘Numerical Simulation of Hydrostatic Mountain Waves’, J. Atmos. Sci. 32, 78–107.

    Google Scholar 

  • Lyons, W. A.: 1975, ‘Turbulent Diffusion and Pollutant Transport in Shoreline Environments’, in Lectures on Air Pollution and Environmental Impact Analysis, American Meteorological Society, pp. 136–208.

  • McCraw, G. R., Shair, F. H., and Seinfeld, J. H.: 1981, ‘Convective Downmixing of Plumes in a Coastal Environment’, J. Appl. Meteorol. 20, 1313–1324.

    Google Scholar 

  • McGill, A. J.: 1987, Sea Breeze Circulations about Auckland, New Zealand Meteorological Service Scientific Report 29, New Zealand Meteorological Service, Wellington, New Zealand, 36 pp.

    Google Scholar 

  • McKendry, I. G., Sturman, A. P., and Owens, I. F.: 1988, ‘Numerical Simulation of Local Thermal Effects on the Wind Field of the Canterbury Plains, New Zealand’, New Zealand Journal of Science, 31, 511–524.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1976, ‘Numerical Simulation of Airflow over Barbados’, Monthly Weather Rev. 104(11), 1392–1402.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1977, ‘The Effects of Topography on Sea and Land Breezes in a Two Dimensional Numerical Model’, Monthly Weather Rev. 105, 1151–1162.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1978, ‘A Test of an Upstream Spline Interpolation Technique for the Advection Terms in a Numerical Mesoscale Model’, Monthly Weather Rev. 106, 818–830.

    Google Scholar 

  • Noonan, J. A. and Smith, R. K.: 1987, ‘The Generation of North Australian Cloud Lines and the “Morning Glory”’, Australian Meteorol. Mag. 35, 31–45.

    Google Scholar 

  • Physick, W. L., Abbs, D. J., and Pielke, R. A.: 1989, ‘Formulation of the Thermal Internal Boundary Layer in a Mesoscale Model’, Boundary-Layer Meteorol. 49, 99–111 (this issue).

    Google Scholar 

  • Pielke, R. A.: 1974, ‘A Three Dimensional Numerical Model of the Sea Breeze Over South Florida’, Monthly Weather Rev. 102, 115–134.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: 1975, ‘Representation of the Heated Planetary Boundary Layer in Mesoscale Models with Coarse Vertical Resolution’, J. Atmos. Sci. 32, 2288–2308.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: 1978, ‘Verification Analysis of the University of Virginia Three Dimensional Mesoscale Model Prediction over South Florida for July 1, 1973’, Monthly Weather Rev. 106, 1568–1589.

    Google Scholar 

  • Pielke, R. A., McNider, R. T., Segal, M. and Mahrer, Y.: 1983, ‘The Use of a Mesoscale Numerical Model for Evaluation of Pollutant Transport and Diffusion in Coastal Regions and over Complex Terrain’, Bull. Amer. Meteorol. Soc. 64, 243–249.

    Google Scholar 

  • Segal, M., McNider, R. T., Pielke, R. A. and McDougal, D. S.: 1982, ‘A Numerical Model Simulation of the Regional Air Pollution Meteorology of the Greater Chesapeake Bay Area — Summer Day Case Study’, Atm. Environ. 16(6), 1381–1397.

    Google Scholar 

  • Segal, M., Yu, C-H., and Pielke, R. A.: 1988, ‘Model Evaluation of the Impact of Thermally Induced Valley Circulation in the Lake Powell Area on long Range Transport’, J. Air Poll. Control Ass. 38(2), 163–170.

    Google Scholar 

  • Steyn, D. G. and McKendry, I. G.: 1988, ‘Quantitative Evaluation of a Three Dimensional Mesoscale Numerical Model of a Sea Breeze in Complex Terrain’, Monthly Weather Rev. (in press).

  • Yu, T.: 1977, ‘A Comparative Study on Parameterisation of Vertical Turbulent Exchange Processes’, Monthly Weather Rev. 105(1), 57–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mckendry, I.G. Numerical simulation of sea breezes over the Auckland region, New Zealand — Air quality implications. Boundary-Layer Meteorol 49, 7–22 (1989). https://doi.org/10.1007/BF00116403

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116403

Keywords

Navigation