Skip to main content
Log in

Formulation of the thermal internal boundary layer in a mesoscale model

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Mesoscale models using a non-local K-scheme for parameterization of boundary-layer processes require an estimate of the planetary boundary layer (PBL) height z i at all times. In this paper, two-dimensional sea-breeze experiments are carried out to evaluate three different formulations for the advective contribution in the z i prognostic equation of Deardorff (1974).

Poor representation of the thermal internal boundary layer in the sea breeze is obtained when z i is advected by the wind at level z i . However, significantly better results are produced if the mean PBL wind is used for the advecting velocity, or if z i is determined simply by checking for the first ‘sufficiently’ stable layer above the ground.

A Lagrangian particle model is used to demonstrate the effect of each formulation on plume dispersion by the sea breeze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A.: 1978, ‘The Height of the Planetary Boundary Layer and the Production of Circulation in a Sea Breeze Model’, J. Atmos. Sci. 35, 1231–1239.

    Google Scholar 

  • Arritt, R. W.: 1987, ‘The Effect of Water Surface Temperature on Lake Breezes and Thermal Internal Boundary Layers’, Boundary-Layer Meteorol. 40, 101–125.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Glendening, J. W., Ulrickson, B. L., and Businger, J. A.: 1986, ‘Mesoscale Variability of Boundary Layer Properties in the Los Angeles Basin’, Mon. Wea. Rev. 114, 2537–2549.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • O'Brien, J. J.: 1970, ‘A Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer’, J. Atmos. Sci. 27, 1213–1215.

    Google Scholar 

  • Physick, W. L.: 1982, ‘Sea Breezes in the Latrobe Valley’, Aust. Meteorol. Mag. 30, 255–263.

    Google Scholar 

  • Physick, W. L.: 1988, ‘Review: Mesoscale Modelling in Complex Terrain’, Earth-Sci. Rev. 25, 199–235.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: 1975, ‘Representation of the Heated Planetary Boundary Layer in Mesoscale Models with Coarse Vertical Resolution’, J. Atmos. Sci. 32, 2288–2308.

    Google Scholar 

  • Pielke, R. A., Arritt, R. W., Segal, M., Moran, M. D., and McNider, R. T.: 1987, ‘Mesoscale Numerical Modeling of Pollutant Transport in Complex Terrain’, Boundary-Layer Meteorol. 41, 59–74.

    Google Scholar 

  • Segal, M., Pielke, R. A., Arritt, R. W., Moran, M. D., Yu, C-H., and Henderson, D.: 1988, ‘Application of a Mesoscale Atmospheric Dispersion Modeling System to the Estimation of SO2 Concentrations from Major Elevated Sources in Southern Florida’, Atmos. Environ. 22, 1319–1334.

    Google Scholar 

  • Steyn, D. G. and McKendry, I. G.: 1988, ‘Quantitative and Qualitative Evaluation of a Three-dimensional Mesoscale Numerical Model Simulation of a Sea Breeze in Complex Terrain’, Mon. Wea. Rev. 116, 1914–1926.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Physick, W.L., Abbs, D.J. & Pielke, R.A. Formulation of the thermal internal boundary layer in a mesoscale model. Boundary-Layer Meteorol 49, 99–111 (1989). https://doi.org/10.1007/BF00116407

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116407

Keywords

Navigation