Skip to main content
Log in

Eilenberger equations for rotating superfluid 3he and calculation of the upper critical angular velocity Ω c2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

On the basis of Gorkov's formulation of superconductivity theory, generalized Eilenberger equations are derived which apply to rotating superfluid 3He in the presence of a magnetic field h and finite superflow v. In analogy to conventional type II superconductors, the possibility of vortex solutions is discussed. An implicit equation determining the upper critical angular velocity Ωc2 as a function of temperature T, magnetic field h, and superflow Ν parallel to the rotation axis is·inferred from the linearized Eilenberger equations. In contrast to the case of slowly rotating 3He-A, the solution of the eigenvalue problem determining the order parameter δ near the upper critical angular velocity admits no coreless vortex solutions. The space-dependent amplitude of the order parameter is analogous to Abrikosov's vortex array solution, while the spin-orbit part is given either by a polar-state type or an Anderson-Brinkman-Morel (ABM)-state-type eigensolution. Among the possible eigensolutions the polar-state type yields for vanishing superflow v the highest critical rotation frequency. For finite superflow v parallel to the rotation axis, however, the ABM-state-type solution is stabilized in comparison to the polar state for |ν|≥0.2π(Tc0/TF)νF at zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Eilenberger, Z. Phys. 214, 195 (1968).

    Google Scholar 

  2. G. Eilenberger, 8. Ferienkurs über Supraleitung, KFA Jülich (1977).

  3. A. L. Fetter, Phys. Rev. Lett. 40, 1656 (1978).

    Google Scholar 

  4. D. Vollhardt, Y. R. Lin-Liu, and K. Maki, J. Low Temp. Phys. 37, 627 (1979).

    Google Scholar 

  5. N. Schopohl and L. Tewordt, J. Low Temp. Phys. 41, 305 (1980).

    Google Scholar 

  6. M. R. Williams and A. L. Fetter, Phys. Rev. B 20, 169 (1979).

    Google Scholar 

  7. A. L. Fetter and P. C. Hohenberg, in Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 817.

    Google Scholar 

  8. L. J. Buchholtz and D. Rainer, Z. Phys. B 35, 151 (1979).

    Google Scholar 

  9. K. Scharnberg and R. A. Klemm, private communication and work to be published.

  10. W. F. Vinen, in Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 1167.

    Google Scholar 

  11. E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).

    Google Scholar 

  12. G. Eilenberger, Phys. Rev. 153, 584 (1967).

    Google Scholar 

  13. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

  14. N. Schopohl, to be published.

  15. A. A. Abrikosov, L. P. Gorkov, and I. Y. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd ed. (Pergamon Press, Oxford, 1965).

    Google Scholar 

  16. G. Eilenberger, Z. Phys. 182, 427 (1965).

    Google Scholar 

  17. G. M. Eliashberg, Sov. Phys.—JETP 34, 668 (1972).

    Google Scholar 

  18. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schopohl, N. Eilenberger equations for rotating superfluid 3he and calculation of the upper critical angular velocity Ω c2 . J Low Temp Phys 41, 409–434 (1980). https://doi.org/10.1007/BF00117950

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117950

Keywords

Navigation