Skip to main content
Log in

Determination of the electric field gradient and relaxation time measurements in scandium metal at very low temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We present the results of measurements on a single crystal sample of scandium metal at temperatures down to 100 ΜK using nuclear quadrupole resonance (NQR). We find two regimes in the relaxation curves: an initial fast relaxation, followed by a slower relaxation consistent with the three exponential recovery expected for an I = 7/2 system in zero external magnetic field. The Korringa constant for this longer time relaxation in our sample is 90 +- 9 msec K−1. By observing deviations in the ratio of the intensities of adjacent nuclear spin transitions at the lowest attainable temperatures, we have been able to make a determination of the sign of the total electric field gradient present in the crystal. We find that the lowest energy state of the nuclear spin system corresponds to m I = +-7/2. A combination of these deviations and pulse NQR allows us to use this system as an absolute thermometer in the ΜKelvin regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Korringa, Physica 16, 601 (1950).

    Google Scholar 

  2. A. Narath, Phys. Rev. 162, 310 (1967); T. Asada and K. Terakura, J. Phys. F 12, 1387 (1982).

    Google Scholar 

  3. D. E. MacLaughlin, J. D. Williamson, and J. Butterworth, Phys. Rev. B 4 60 (1971).

    Google Scholar 

  4. J. W. Ross, F. Y. Fradin, L. L. Isaacs, and D. J. Lam, Phys. Rev. 183, 183 (1969); A. Narath and T. Fromhold Jr., Phys. Lett. 25A, 49 (1967); Y. Masuda, J. Phys. Soc. Jap., 26 1058 (1969).

    Google Scholar 

  5. M. Goldman, Spin Temperatures and Nuclear Magnetic Resonance in Solids, Clarendon Press, Oxford (1970).

    Google Scholar 

  6. M. T. Hiuku, M. T. Loponen, T. A. Jyrkkio, J. M. Kyynarainen, A. S. Oja, and J. K. Soini, in Proceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), p. 133.

    Google Scholar 

  7. K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, and F. Pobell, J. Low Temp. Phys. 73, 101 (1988).

    Google Scholar 

  8. R. G. Barnes, F. Borsa, S. L. Segel, and D. R. Torgeson, Phys. Rev. 137, A1828 (1965).

    Google Scholar 

  9. M. H. Cohen and F. Reif in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1958), Vol. 5, p. 321; T. P. Das and E. L. Hahn in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1958), Suppl. 1, p. 58.

    Google Scholar 

  10. G. Fricke, H. Kopfermann, S. Penselin, and K. Schlupmann, Naturwiss. 46, 106 (1959).

    Google Scholar 

  11. F. W. de Wette, Phys. Rev. 123, 2070 (1961).

    Google Scholar 

  12. T. P. Das and M. Pomerantz, Phys. Rev. 123, 207 (1961).

    Google Scholar 

  13. H. Ernst, E. Hagn, E. Zech, and G. Eska, Phys. Rev. B 19, 4460 (1979).

    Google Scholar 

  14. Y. Tang, E. D. Adams, K. Uhlig, and D. N. Bittner, J. Low Temp. Phys. 60, 351 (1985).

    Google Scholar 

  15. M. Bloom, E. L. Hahn, and B. Herzog, Phys. Rev. 97, 1699 (1955).

    Google Scholar 

  16. M. Bloom and R. Norberg, Phys. Rev. 93, 638 (1954); E. L. Hahn and B. Herzog, Phys. Rev. 93, 639 (1954).

    Google Scholar 

  17. G. Eska, J. Low Temp. Phys. 73, 207 (1988).

    Google Scholar 

  18. L. Pollack, E. N. Smith, R. E. Mihailovich, J. H. Ross Jr., P. Hakonen, E. Varoquaux, J. M. Parpia, and R. C. Richardson, Physica B 165 & 166, 793 (1990).

    Google Scholar 

  19. See references within reference 9. M. H. Cohen and F. Reif in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1958), Vol. 5, p. 321.

  20. N. S. Sullivan, Bulletin of Amer. Phys. Soc. March 1989, p. 736. P. M. Anderson, N. S. Sullivan, M. Rall, and J. P. Brison, Physica B 169, 453 (1991).

  21. Oxford Instruments Ltd., Osney Mead, Oxford OX2 0DX, U.K.

  22. Ames Labs, Iowa State University, Ames, Iowa 50011-3020.

  23. Avantek, 3175 Bowers Ave., Santa Clara, CA 95054; Comlinear Corp., 4800 Wheaton Dr., Fort Collins, CO 80525; EMI filters from Erie Technological Products, Ltd., Trenton, Ontario, Canada—note we used 1233-000 type filters for the low frequency feedthrough application and 1217-000 filters for the transmit and receive feedthrough. They are not shown in the figure due to space constraints. Hewlett-Packard Co., 19310 Pruneridge Ave., Cupertino, CA 95014; Interface Technology, 2100-T East Alsta Ave., Glendora, CA 91740; Merrimac, P.O. Box 986, 41 Farfield Place, West Caldwell, NJ 07007; Mini-Circuits, P.O. Box 166, Brooklyn, NY 11235; North Hills Electronics, 1 Alexander Place, Glen Cove, NY 11542; EG&G Princeton Applied Research, P.O. Box 2565, Princeton, NJ 08543; Tektronix Inc., P.O. Box 500, Beaverton, OR 97077; Wavetek, 5808 Churchman Bypass, Indianapolis, IN 46203.

  24. J. Lepaisant, D. Bloyet and E. Varoquaux, Rev. Sci. Inst. 55, 4, 521 (1984).

    Google Scholar 

  25. D. Greywall, Phys. Rev. B 33, 7520 (1986).

    Google Scholar 

  26. California Fine Wire Sigmund Cohn, Mt. Vernon, NY.

  27. B. G. Turrell, G. Eska, N. Masuhara, and E. Schuberth, J. Low. Temp. Phys. 70, 151 (1988).

    Google Scholar 

  28. P. Bernier and H. Alloul, J. Phys. F: Metal Physics 3, 869 (1973).

    Google Scholar 

  29. T.-W. E. Tsang and K. A. Gschneidner Jr., J. Less-Common Metals 80, 257 (1981).

    Google Scholar 

  30. T.-W. E. Tsang, K. A. Gschneidner Jr. and F. A. Schmidt, Proceedings of the 12th Rare Earth Research Conference, C. E. Lundin, ed. (Denver Research Institute, 1976), Vol. II, p. 847.

  31. F. Y. Fradin, Phys. Rev. B 5, 1119 (1972).

    Google Scholar 

  32. H. Benoit, P.-G. de Gennes, and D. Silhouette, Comptes Rendus 256, 3841 (1963).

    Google Scholar 

  33. A. G. Anderson and A. G. Redfield, Phys. Rev. 116, 583 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollack, L., Smith, E.N., Parpia, J.M. et al. Determination of the electric field gradient and relaxation time measurements in scandium metal at very low temperature. J Low Temp Phys 87, 753–772 (1992). https://doi.org/10.1007/BF00118333

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118333

Keywords

Navigation