Skip to main content
Log in

Extension of Penman's formulae to multi-layer models

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In this paper, the well-established multi-layer model originally devised by Waggoner and Reifsnyder (1968) is used. This steady-state model based on an electrical analogue simulates the energy exchange between the vegetation and the atmosphere. A purely mathematical development of the basic equations of this model yields explicit expressions of the total fluxes of sensible and latent heat at the top of the canopy as a function of the net radiation absorbed in each layer, the soil heat flux, the water vapour pressure deficit at a reference height and the whole set of elementary conductances (stomatal, boundary-layer and aerodynamic). These new equations can be considered as a generalization of the familiar Penman's formulae to a multi-layer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, J.: 1984, ‘Uncoupled Multi-Layer Model for the Transfer of Sensible and Latent Heat Flux Densities from Vegetation’, Boundary-Layer Meteorol. 26, 213–225.

    Google Scholar 

  • Furnival, G. M., Waggoner, P. E., and Reifnyder, W. E.: 1975, ‘Computing the Energy Budget of a Leaf Canopy with Matrix Algebra and Numerical Integration’, Agric. Meteorol. 14, 405–416.

    Google Scholar 

  • Goudriaan, J. and Waggoner, P. E.: 1972, ‘Simulating Both Aerial Microclimate and Soil Temperature from Observations Above the Foliar Canopy’, Neth. J. Agri. Sci. 20, 104–124.

    Google Scholar 

  • Halldin, S. and Lindroth, A.: 1986, ‘Pine Forest Microclimate Simulation Using Different Diffusivities’, Boundary-Layer Meteorol. 35, 103–123.

    Google Scholar 

  • Monteith, J. L.: 1973, Principles of Environmental Physics, Edward Arnold, London.

    Google Scholar 

  • Monteith, J. L.: 1981, ‘Evaporation and Surface Temperature’, Quart. J. R. Meteorol. Soc. 107, 1–27.

    Google Scholar 

  • Penman, H. L.: 1948, ‘Natural Evaporation from Open Water, Bare Soil and Grass’, Proc. Roy. Soc. London A193, 120–145.

    Google Scholar 

  • Penman, H. L.: 1953, ‘The Physical Basis of Irrigation Control’, Rep. 13th Int. Hort. Cong. 2, 913–923.

    Google Scholar 

  • Perrier, A.: 1976, ‘Etude et essai de modélisation des échanges de masse et d'énergie au niveau des couverts végétaux’, Thèse de Doctorat d'Etat, Université de Paris 6, 240 pp.

  • Shuttleworth, W. J.: 1976, ‘A One-Dimensional Theoretical Description of the Vegetation-Atmosphere Interaction’, Boundary-Layer Meteorol. 10, 273–302.

    Google Scholar 

  • Slatyer, R. O. and McIlroy, I. C.: 1961, Practical Micrometeorology, UNESCO, Paris.

    Google Scholar 

  • Waggoner, P. E. and Reifsnyder, W. E.: 1968, ‘Simulation of the Temperature, Humidity and Evaporation Profiles in a Leaf Canopy’, J. Appl. Meteorol. 7, 400–409.

    Google Scholar 

  • Waggoner, P. E. and Turner, N. C.: 1972, ‘Comparison of Simulated and Actual Evaporation from Maize and Soil in a Lysimeter’, Agric. Meteorol. 10, 113–123.

    Google Scholar 

  • Waggoner, P. E., Furnival, G. M., and Reifsnyder, W. E.: 1969, ‘Simulation of the Microclimate in a Forest’, Forest Sciences 15, 37–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lhomme, J.P. Extension of Penman's formulae to multi-layer models. Boundary-Layer Meteorol 42, 281–291 (1988). https://doi.org/10.1007/BF00121587

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121587

Keywords

Navigation