Skip to main content
Log in

A mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A linear model for neutral surface-layer flow over complex terrain is presented. The spectral approach in the two horizontal coordinates and the finite-difference method in the vertical combines the simplicity and computational efficiency of linear methods with flexibility for closure schemes of finite-difference methods. This model makes it possible to make high-resolution computations for an arbitrary distribution of surface roughness and topography. Mixing-length closure as well as E − ε closure are applied to two-dimensional flow above sinusoidal variations in surface roughness, the step-in-roughness problem, and to two-dimensional flow over simple sinusoidal topography. The main difference between the two closure schemes is found in the shear-stress results. E − ε has a more realistic description of the memory effects in length and velocity scales when the surface conditions change. Comparison between three-dimensional model calculations and field data from Askervein hill shows that in the outer layer, the advection effects in the shear stress itself are also important. In this layer, an extra equation for the shear stress is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A. and Luxton, R. E.: 1971, ‘The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness. Part 1. Smooth to Rough’, J. Fluid Mech. 48, 721–761.

    Google Scholar 

  • Beljaars, A. C. M., Schotanus, P., and Nieuwstadt, F. T. M.: 1983, ‘Surface Layer Similarity under Nonuniform Fetch Conditions’, J. Clim. Appl. Meteorol. 22, 1800–1810.

    Google Scholar 

  • Bradley, E. F.: 1968, ‘A Micrometeorological Study of Velocity Profiles and Surface Drag in the Region Modified by a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 94, 361–379.

    Google Scholar 

  • Caneill, J. Y., Buty, D., and Saab, A. E.: 1985, Sensitivity Studies Related to Turbulence Parameterizations for Numerical Simulations of Mesoscale Flows over Complex Terrain, Seventh Symp. Turb. Diff., Amer. Meteorol. Soc., November 12–15, Boulder, Co.

    Google Scholar 

  • Detering, H. W. and Etling, D.: 1985, ‘Application of the E − ε Turbulence Closure Model to the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 33, 113–133.

    Google Scholar 

  • Durst, F., Launder, B. E., Schmidt, F. W., and Whitelaw, J. H.: 1979, Turbulent Shear Flows I, Springer-Verlag, Berlin, 415 pp.

    Google Scholar 

  • Hunt, J. C. R. and Simpson, J. E.: 1982, ‘Atmospheric Boundary Layers over Non-Homogeneous Terrain’, in E. J. Plate (ed.), Engineering Meteorology, Elsevier, Amsterdam.

    Google Scholar 

  • Jackson, N. A.: 1976, ‘The Propagation of Modified Flow Downstream of a Change in Roughness’, Quart. J. Roy. Meteorol. Soc. 102, 924–933.

    Google Scholar 

  • Jackson, P. S. and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’, Quart. J. Roy. Meteorol. Soc. 101, 929–955.

    Google Scholar 

  • Launder, B. E.: 1975, Progress in the Modelling of Turbulent Transport, Lecture notes presented at the von Kármán Institute, Rhode-St.-Genese, Belgium, March 3–7.

  • Lumley, J. L. and Khajeh-Nouri, B.: 1974, ‘Computational Modelling of Turbulent Transport’, Adv. Geophys. 18A, 169–192.

    Google Scholar 

  • Mason, P. J. and Sykes, R. I.: 1979, ‘Flow over an Isolated Hill of Moderate Slope’, Quart. J. Roy. Meteorol. Soc. 105, 383–395.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. Space Phys. 20, 851–875.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Van Dop, H. (eds.): 1982, Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, New York.

    Google Scholar 

  • Panofsky, H. A. and Townsend, A. A.: 1964, ‘Change of Terrain Roughness and the Wind Profile’, Quart. J. Roy. Meteorol. Soc. 90, 147–155.

    Google Scholar 

  • Peterson, E. W.: 1969a, ‘On the Relation Between the Shear Stress and the Velocity Profile After a Change in Surface Roughness’, J. Atmos. Sci. 26, 773–774.

    Google Scholar 

  • Peterson, E. W.: 1969b, ‘Modification of Mean Flow and Turbulent Energy by Change in Roughness Under Conditions of Neutral Stability’, Quart. J. Roy. Meteorol. Soc. 95, 561–575.

    Google Scholar 

  • Raithby, G. D. and Stubley, G. D.: 1985, Prediction and Comparison with Experiment of Three-Dimensional Flow over the Askervein Hill, Rep. Thermal Science Ltd., Waterloo, Ont., Canada.

    Google Scholar 

  • Rao, K. S., Wyngaard, J. C., and Coté, O. R.: 1974, ‘The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness’, J. Atmos. Sci. 31, 738–746.

    Google Scholar 

  • Richards, K. J.: 1980, ‘The Formation of Ripples and Dunes on an Erodible Bed’, J. Fluid Mech. 99, 597–618.

    Google Scholar 

  • Rodi, W.: 1980, Turbulence Models and Their Applications in Hydraulics: A State-of-the-Art Review, Inst. für Hydromechanik, Univ. of Karlsruhe, Germany.

    Google Scholar 

  • Shir, C. C.: 1972, ‘A Numerical Computation of Air Flow over a Sudden Change of Surface Roughness’, J. Atmos. Sci. 29, 304–310.

    Google Scholar 

  • Taylor, P. A.: 1969, ‘On Wind and Shear Stress Profiles Above a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 95, 77–91.

    Google Scholar 

  • Taylor, P. A.: 1978, A Note on Velocity and Turbulent Energy Profiles in the Surface Layer with Particular Reference to the Numerical Modelling of Turbulent Boundary-Layer Flow Above Horizontally Inhomogeneous Terrain, Internal Rep. ARQL 4/78, Atmos. Environ. Service, Downsview, Ont., Canada, 36 pp.

    Google Scholar 

  • Taylor, P. A.: 1980, ‘Some Recent Results from a Numerical Model of Surface Boundary-Layer Flow over Hills’, in J. C. Wyngaard (ed.), Workshop on the Planetary Boundary Layer, Amer. Meteorol. Soc., Boston, pp. 150–157.

    Google Scholar 

  • Taylor, P. A. and Teunissen, H. W.: 1985, The Askervein Hill Project: Report on the September/October 1983 Main Field Experiment, Internal Rep. MSRB-84–6, Atmos. Environ. Service, Downsview, Ont., Canada.

    Google Scholar 

  • Taylor, P. A., Mason, P. J., and Bradley, E. F.: 1985, Boundary Layer Flow over Low Hills —A Review of Recent Field Experiments, Seventh Symp. Turb. Diff., Amer. Meteorol. Soc., November 12–15, Boulder, Co.

    Google Scholar 

  • Taylor, P. A., Walmsley, J. L., and Salmon, J. R.: 1983, ‘A Simple Model of Neutrally Stratified Boundary Layer Flow over Real Terrain Incorporating Wavenumber-Dependent Scaling’, Boundary-Layer Meteorol. 26, 169–189.

    Google Scholar 

  • Townsend, A. A.: 1965, ‘The Response of a Turbulent Boundary Layer to Abrupt Changes in Surface Conditions’, J. Fluid Mech. 22, 799–822.

    Google Scholar 

  • Townsend, A. A.: 1966, ‘The Flow in a Turbulent Boundary Layer After a Change in Surface Roughness’, J. Fluid Mech. 26, 255–266.

    Google Scholar 

  • Townsend, A. A.: 1972, ‘Flow in a Deep Turbulent Boundary Layer over a Surface Distorted by Water Waves’, J. Fluid Mech. 55, 719–735.

    Google Scholar 

  • Walmsley, J. L. and Salmon, J. R.: 1984, A Boundary-Layer Model for Wind Flow over Hills: Comparison of Model Results with Askervein '83 Data, Proc. European Wind Energy Conference and Exhibition, Hamburg, October 1984.

  • Walmsley, J. L., Salmon, J. R., and Taylor, P. A.: 1982, ‘On the Application of a Model of Boundary-Layer Flow over Low Hills to Real Terrain’, Boundary-Layer Meteorol. 23, 17–46.

    Google Scholar 

  • Walmsley, J. L., Taylor, P. A., and Keith, T.: 1986, ‘A Simple Model of Neutrally Stratified Boundary-Layer Flow over Complex Terrain with Surface Roughness Modulations (MS3DJH/3R)’, Boundary-Layer Meteorol. 36, 157–186.

    Google Scholar 

  • Zeman, O.: 1981, ‘Progress in the Modelling of Planetary Boundary Layers’, Ann. Rev. Fluid Mech. 13, 253–272.

    Google Scholar 

  • Zeman, O. and Jensen, N. O.: 1985, Response of the Reynolds Stress Tensor to the Mean Flow Distortion over a Two-Dimensional Hill, Seventh Symp. Turb. Diff., Amer. Meteorol. Soc., November 12–15, Boulder, Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beljaars, A.C.M., Walmsley, J.L. & Taylor, P.A. A mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography. Boundary-Layer Meteorol 38, 273–303 (1987). https://doi.org/10.1007/BF00122448

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122448

Keywords

Navigation