Skip to main content
Log in

Interactions of nocturnal slope flows with ambient winds

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A quasi-one-dimensional numerical model containing a prognostic turbulent kinetic energy parameterization and simplified approximations to horizontal gradients is used to study interactions of thermally induced nocturnal slope flows with following and opposing ambient winds. It is found that a following ambient wind causes the peak perturbation wind to be weaker and to be realized at a greater height, while an opposing ambient wind leads to a stronger perturbation wind at a lower height. The reason for this response lies in the interactions of the shears of the thermal and ambient components through the mechanical production of turbulent kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Defant F.: 1951, ‘Local Winds’, Compendium of Meteorology, American Meteorological Society, pp. 655–672.

  • Delage, Y.: 1974, ‘A Numerical Study of the Nocturnal Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 100, 351–364.

    Google Scholar 

  • Dickerson, M. H. and Gudiksen, P. H.: 1983, Atmospheric Studies in Complex Terrain: Technical Progress Report FY-1979 through FY-1983, 367 pp.

  • Doran, J. C. and Horst, T. W.: 1983, ‘Observations and Models of Simple Nocturnal Slope Flows’, J. Atmos. Sci. 40, 708–717.

    Google Scholar 

  • Egan, B. A.: 1984, ‘Transport and Diffusion in Complex Terrain (Review)’, Boundary-Layer Meteorol. 30, 3–28.

    Google Scholar 

  • Fitzjarrald, D. R.: 1984, ‘Katabatic Wind in Opposing Flow’, J. Atmos. Sci. 41, 1143–1158.

    Google Scholar 

  • Horst, T. W. and Doran, J. C.: 1982, Simple Nocturnal Slope Flow Data from the Rattlesnake Mountain Site, Pacific Northwest Laboratory, Richland, Washington U.S.A., 98 pp.

    Google Scholar 

  • Lykosov, V. N. and Gutman, L. N.: 1972, ‘Turbulent Boundary Layer Above a Sloping Underlying Surface’, Izv. Atmos. Ocean. Phys. 8, 799–809.

    Google Scholar 

  • Mannouji, N., 1982: ‘A Numerical Experiment on the Mountain and Valley Winds’, J. Meteorol. Soc. Japan 60, 1085–1105.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development Over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1984, ‘Numerical Simulation of Slope and Mountain Flows’, J. Clim. Appl. Meteorol. 23, 1441–1453.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, J. Geophys. Res. 20, 851–875.

    Google Scholar 

  • O'Brien, J. J.: 1970, ‘A Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer’, J. Atmos. Sci. 27, 1213–1215.

    Google Scholar 

  • Pielke R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, 612 pp.

  • Prandtl, L.: 1942, Fuhrer durch die Stromungslehre, Verslag Vieweg und Sohn, Braunschweig, Germany.

    Google Scholar 

  • Rao, K. S. and Snodgrass, H. F.: 1981, ‘A Nonstationary Nocturnal Drainage Flow Model’, Boundary-Layer Meteorol. 20, 309–320.

    Google Scholar 

  • Yamada, T.: 1983, ‘Simulations of Nocturnal Drainage Flows by a q 2 l turbulence Closure Model’, J. Atmos. Sci. 40, 91–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arritt, R.W., Pielke, R.A. Interactions of nocturnal slope flows with ambient winds. Boundary-Layer Meteorol 37, 183–195 (1986). https://doi.org/10.1007/BF00122763

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122763

Keywords

Navigation