Skip to main content
Log in

Intercomparison of three urban climate models

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An intercomparison of the surface energy budgets from three urban climate models was made to assess the comparability of results, and to evaluate the surface energy fluxes from each model. The three models selected spanned the continuum of approaches currently employed in the treatment of the effects of urban geometry. The first model was an urban canopy-layer model which explicitly examined urban canyon geometry. The second model treated the city as a warm, rough, moist plate but included greatly simplified parameterizations of urban geometry. Neither model included a dynamic link to the urban boundary-layer. The third model was a one-dimensional urban boundary-layer model which utilized a simple warm, rough, moist plate approach but included a dynamic coupling of the urban surface layer to the urban boundary-layer.

Results showed considerable disagreement between the three models in regards to the individual energy fluxes. Average rankings of the energy fluxes in terms of comparability from high-to-low similarity were: (1) solar radiation, (2) sensible heat flux, (3) conduction, (4) latent heat flux, (5) longwave re-radiation, and (6) longwave radiation input. In general, the urban canopy-layer model provided more realistic results, although each model demonstrated strong and weak points. Results indicate that current urban boundary-layer models may produce surface energy budgets with lower sensible heat fluxes and substantially higher latent heat fluxes than is supported by field evidence from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aida, M.: 1982, ‘Urban Albedo as a Function of the Urban Structure — A Model Experiment’, Boundary-Layer Meteorol. 23, 405–413.

    Google Scholar 

  • Arnfield, A. J.: 1982, ‘An Approach to the Estimation of the Surface Radiative Properties and Radiation Budget of Cities’, Phys. Geog. 3, 97–122.

    Google Scholar 

  • Atwater, M. A.: 1972, ‘Thermal Effects of Urbanization and Industrialization in the Boundary Layer: A Numerical Study’, Boundary-Layer Meteorol. 3, 229–245.

    Google Scholar 

  • Auer, A. H., Jr.: 1978, ‘Correlation of Landuse and Cover with Meteorological Anomalies’, J. Appl. Meteorol. 17, 636–643.

    Google Scholar 

  • Bärring, L., Mattsson, J. O., and Lindqvist, S.: 1985, ‘Canyon Geometry, Street Temperatures and Urban Heat Island in Malmö, Sweden’, J. Climatol. 5, 433–444.

    Google Scholar 

  • Bornstein, R. D.: 1975, ‘The Two-Dimensional URBMET Urban Boundary Layer Model’, J. Appl. Meteorol. 14, 1459–1477.

    Google Scholar 

  • Bornstein R. D.: 1986, ‘Urban Climate Models: Nature, Limitations and Applications’, in Urban Climatology and It's Application with Special Regard to Tropical Areas, WMO No. 652, pp. 237–276.

  • Bornstein, R. D. and Oke, T. R.: 1981, ‘Influence of Pollution on Urban Climatology’, Advances in Environmental Science and Engineering 2, 171–202.

    Google Scholar 

  • Carlson, T. N. and Boland, F. E.: 1978, ‘Analysis of Urban-Rural Canopy Using a Surface Heat Flux/Temperature Model’, J. Appl. Meteorol. 17, 998–1013.

    Google Scholar 

  • Carlson, T. N., Dodd, J. K., Benjamin, S. G., and Cooper, J. N.: 1981, ‘Satellite Estimation of the Surface Energy Balance, Moisture Availability and Thermal Inertia’, J. Appl. Meteorol. 20, 67–87.

    Google Scholar 

  • Ching, J. K. S.: 1985, ‘Urban-Scale Variations of Turbulence Parameters and Fluxes’, Boundary-Layer Meteorol. 33, 335–361.

    Google Scholar 

  • Ching, J. K. S., Clarke, J. F., and Godowitch, J. M.: 1983, ‘Modulation of Heat Flux by Different Scales of Advection in an Urban Environment’, Boundary-Layer Meteorol. 25, 171–191.

    Google Scholar 

  • Cleugh, H. A. and Oke, T. R.: 1986, ‘Suburban-Rural Energy Balance Comparisons in Summer for Vancouver, B. C.’, Boundary-Layer Meteorol. 36, 351–369.

    Google Scholar 

  • Coakley, J. A. and Wielicki, B. A.: 1979, ‘Testing Energy Balance Climate Models’, J. Atmos. Sci. 36, 2031–2039.

    Google Scholar 

  • Cole, R. J.: 1976, ‘The Longwave Radiation Incident upon the External Surface of Buildings’, Building Services Engineer 44, 195–206.

    Google Scholar 

  • Cole, R. J. and Sturrock, N. S.: 1977, ‘The Convective Heat Exchange at the External Surface of Buildings’, Building and Environment 12, 207–214.

    Google Scholar 

  • Doll, D., Ching, J. K. S., and Kaneshiro, J.: 1985, ‘Parameterization of Subsurface Heating for Soil and Concrete Using Net Radiation Data’, Boundary-Layer Meteorol. 32, 351–372.

    Google Scholar 

  • Goward, S. N.: 1981, ‘Thermal Behavior of Urban Landscapes and the Urban Heat Island’, Phys. Geog. 2, 19–33.

    Google Scholar 

  • Gutman, D. P. and Torrance, K. E.: 1975, ‘Response of the Urban Boundary Layer to Heat Addition and Surface Roughness’, Boundary-Layer Meteorol. 9, 217–233.

    Google Scholar 

  • Harrison, R., McGoldrick, B., and Williams, C. G. B.: 1984, ‘Artificial Heat Release From Greater London, 1971–1976’, Atmos. Environ. 18, 2291–2304.

    Google Scholar 

  • Jenner, C. B.: 1975, ‘Simulation of Land-Use Effects on the Urban Temperature Field’, unpublished Ph.D. Dissertation, University of Maryland, College Park, MD, 155 pp.

    Google Scholar 

  • Kalanda, B. D., Oke, T. R., and Spittlehouse, D. L.: 1980, ‘Suburban Energy Balance Estimates for Vancouver, B.C., Using the Bowen Ratio-Energy Balance Approach’, J. Appl. Meteorol. 19, 791–802.

    Google Scholar 

  • Kerschgens, M. J. and Hacker, J. M.: ‘On the Energy Budget of the Convective Boundary Layer over an Urban and Rural Environment’, Beitr. Phys. Atmosph. 58, 171–185.

  • Lettau, H.: 1969, ‘Note on Aerodynamic Roughness-Parameter Estimation on the Basis of Roughness-Element Description’, J. Appl. Meteorol. 5, 828–832.

    Google Scholar 

  • Loudon, S. M., 1984: ‘Verification of Urban Energy Balance Models’, M.Sc. Thesis, University of British Columbia, Vancouver, B.C.

    Google Scholar 

  • McElroy, J. L.: 1973, ‘Numerical Study of the Nocturnal Heat Island Over a Medium-Sized Mid-Latitude City (Columbus, Ohio)’, Boundary-Layer Meteorol. 3, 442–453.

    Google Scholar 

  • Munn, R. E., Alcamo, J., and Fedorov, V.: ‘Evaluating the Performance of Air Quality Models in a Policy Framework’, Proc. 16th Int. Tech. Meeting on Air Pollution Modelling, NATO, CCMS, Plenum Publ. Co. (in press).

  • Myrup, L. O.: 1969, ‘A Numerical Model of the Urban Heat Island’, J. Appl. Meteorol. 8, 908–918.

    Google Scholar 

  • Myrup L. O., and Morgan, D. L.: 1972, ‘Numerical Model of the Urban Atmosphere. I. The City-Surface Interface’, Contributions in Atmospheric Science, No. 4, Davis, CA.

  • Nunez, M. and Oke, T. R.: 1976, ‘Longwave Radiative Flux Divergence and Nocturnal Cooling of the Urban Atmosphere. II. Within an Urban Canyon’, Boundary-Layer Meteorol. 10, 121–135.

    Google Scholar 

  • Nunez, M. and Oke, T. R.: 1977, ‘The Energy Balance of an Urban Canyon’, J. Appl. Meteorol. 16, 11–19.

    Google Scholar 

  • Oke, T. R.: 1974, Review of Urban Climatology 1968–1973, WMO Technical Note No. 134, WMO, Geneva, Switzerland.

    Google Scholar 

  • Oke, T. R.: 1982, ‘The Energetic Basis of the Urban Heat Island’, Q. J. Roy. Meteorol. Soc. 108, 1–24.

    Google Scholar 

  • Oke, T. R., Kalanda, B. D., and Steyn, D. G.: 1980/81, ‘Parameterization of Heat Storage in Urban Areas’, Urb. Ecol. 5, 45–54.

    Google Scholar 

  • Outcalt, S. I.: 1972, ‘A Reconnaissance Experiment in Mapping and Modeling the Effect of Land Use on Urban Thermal Regimes’, J. Appl. Meteorol. 11, 1369–1373.

    Google Scholar 

  • Parry, M.: 1967, ‘The Urban ‘Heat Island’’, Biometeorology 2, 616–624.

    Google Scholar 

  • Potter, G. L. and Gates, W. L.: 1984, ‘A Preliminary Intercomparison of the Seasonal Response of Two Atmospheric Climate Models’, Mon. Weather Rev. 112, 909–917.

    Google Scholar 

  • Sagara, K. and Horie, G.: 1978, ‘Effects of Heat Fluxes Through External Surfaces of the Vertical Walls on External Thermal Environment’, Jap. Progr. Climatol., pp. 1–11.

  • Sharples, S.: 1984, ‘Full-Scale Measurements of Convective Energy Losses From External Building Surfaces’, Building and Environment 19, 31–39.

    Google Scholar 

  • Sievers, U. and Zdunkowski, W.: 1985, ‘A Numerical Simulation Scheme for the Albedo of City Street Canyons’, Boundary-Layer Meteorol. 33, 245–257.

    Google Scholar 

  • Sinclair, T. R., Murphy, C. E., Jr., and Knoerr, K. R.: 1976, ‘Development and Evaluation of Simplified Models for Simulating Canopy Photosynthesis and Transpiration’, J. Appl. Ecol. 13, 813–829.

    Google Scholar 

  • Sorbjan, Z. and Uliasz, M.: 1982, ‘Some Numerical Urban-Boundary Layer Studies’, Boundary-Layer Meteorol, 22, 481–502.

    Google Scholar 

  • Taesler, R.: 1986, ‘Urban Climatological Models and Data’, in Urban Climatology and It's Applications with Special Regard to Tropical Areas, WMO No. 652, pp. 199–236.

  • Terjung, W. H. and Louie, S. S.-F.: 1974, ‘A Climatic Model of Urban Energy Budgets’, Geogr. Analysis 6, 341–367.

    Google Scholar 

  • Terjung, W. H. and O'Rourke, P. A.: 1980a, ‘Simulating the Causal Elements of Urban Heat Islands’, Boundary-Layer Meteorol. 19, 93–118.

    Google Scholar 

  • Terjung, W. H. and O'Rourke, P. A.: 1980b, ‘An Economical Canopy Model for Use in Urban Climatology’, Int. J. Biometeorol. 24, 281–291.

    Google Scholar 

  • Terjung, W. H. and O'Rourke, P. A.: 1980c, ‘Energy Exchanges in Urban Landscapes: Selected Climatic Models’, Publications in Climatology XXXIII, Thornthwaite Associates and Center for Climatic Research, Elmer, New Jersey.

    Google Scholar 

  • Terjung, W. H. and O'Rourke, P. A.: 1980d, ‘Influences of Physical Structures on Urban Energy Budgets’, Boundary-Layer Meteorol. 19, 421–439.

    Google Scholar 

  • Todhunter, P. E.: 1986, ‘A Comparison of Selected Surface Energy Balance Models in Urban Climatology’, Ph.D. Dissertation, University of California, Los Angeles.

    Google Scholar 

  • Tuller, S.: 1973, ‘Microclimatic Variations in a Downtown Urban Environment’, Geografiska Annaler 55A, 123–136.

    Google Scholar 

  • Vukovich, F. M.: 1983, ‘An Analysis of the Ground Temperature and Reflectivity Pattern About St. Louis, Missouri, Using HCMM Satellite Data’, J. Clim. Appl. Meteorol. 22, 560–571.

    Google Scholar 

  • White, J. M., Eaton, F. D., and Auer, A. H., Jr.: 1978, ‘The Net Radiation Budget of the St. Louis Metropolitan Area’, J. Appl. Meteorol. 17, 593–599.

    Google Scholar 

  • Willmott, C. J.: 1982, ‘Some Comments on the Evaluation of Model Performance’, Bull. Amer. Meteorol. Soc. 63, 1309–1313.

    Google Scholar 

  • World Meteorological Organization: 1981, Preliminary Plan for the World Climate Research Programme, WMO, Geneva, Switzerland.

    Google Scholar 

  • Yamashita, S., Sekine, K., Shoda, M., Yamashita, K., and Hara, Y.: 1986, ‘On Relationships Between Heat Island and Sky View Factor in the Cities of Tama River Basin, Japan’, Atmos. Environ. 20, 681–686.

    Google Scholar 

  • Yap, D., and Oke, T. R.: 1974, ‘Sensible Heat Fluxes over an Urban Area — Vancouver, B.C.’, J. Appl. Meteorol. 13, 880–890.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todhunter, P.E., Terjung, W.H. Intercomparison of three urban climate models. Boundary-Layer Meteorol 42, 181–205 (1988). https://doi.org/10.1007/BF00123812

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123812

Keywords

Navigation