Skip to main content
Log in

Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Thymidine kinase (TK), which is induced by Herpes Simplex Virus 1 (HSV1), plays a key role in the antiviral activity of guanine derivatives such as aciclovir (ACV). In contrast, ACV shows only low affinity to the corresponding host cell enzyme. In order to define the differences in substrate binding of the two enzymes on molecular level, models for the three-dimensional (3-D) structures of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites started from primary and secondary structure analysis of various kinases. The results were validated to homologous enzymes with known 3-D structures. The models predict that both enzymes consist of a central core β-sheet structure, connected by loops and α-helices very similar to the overall structure of other nucleotide binding enzymes. The phosphate binding is made up of a highly conserved glycine-rich loop at the N-terminus of the proteins and a conserved region at the C-terminus. The thymidine recognition site was found about 100 amino acids downstream from the phosphate binding loop. The differing substrate specificity of human and HSV1-TK can be explained by amino-acid substitutions in the homologous regions.

To achieve a better understanding of the structure of the active site and how the thymidine kinase proteins interact with their substrates, the corresponding complexes of thymidine and dihydroxypropoxyguanine (DHPG) with HSV1 and human TK were built. For the docking of the guanine derivative, the X-ray structure of Elongation Factor Tu (EF-Tu), co-crystallized with guanosine diphosphate, was taken as reference. Fitting of thymidine into the active sites was done with respect to similar interactions found in thymidylate kinase. To complement the analysis of the 3-D structures of the two kinases and the substrate enzyme interactions, site-directed mutagenesis of the thymidine recognition site of HSV1-TK has been undertaken, changing Asp162 in the thymidine recognition site into Asn. First investigations reveal that the enzymatic activity of the mutant protein is destroyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elion, G.B., Furmann, P.A., Lubbers, C.M., DeMiranda, P., Beauchamp, L. and Schaeffer, H.J., Proc. Natl. Acad. Sci. USA, 74 (1977) 5716.

    Google Scholar 

  2. Fyfe, J.A., Keller, P.M., Furmann, P.A. and Elion, G.B., J. Biol. Chem., 253 (1978) 8721.

    Google Scholar 

  3. Elion, G.B., Am. J. Med., 73 (1982) 7.

    Google Scholar 

  4. Reid, R., Mar, E.C., Huang, E.-S. and Topal, M.D., J. Mol. Biol., 263 (1988) 3898.

    Google Scholar 

  5. Furmann, P.A., St. Clair, M.H. and Spector, T., J. Biol. Chem., 259 (1984) 9575.

    Google Scholar 

  6. Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E. and Thornton, J.M., Nature, 326 (1987) 347.

    Google Scholar 

  7. Bradshaw, H.D. and Deininger, P.L., Mol. Cell. Biol., 4 (1984) 2316.

    Google Scholar 

  8. Hofbaur, R., Wien, personal communication.

  9. Kwoh, T.J. and Engler, J.A., Nucl. Acids Res., 12 (1984) 3959.

    Google Scholar 

  10. Lewis, J.A., Mol. Cell. Biol. 6 (1986) 1998.

    Google Scholar 

  11. Boyle, B.D. Coupar, B.E.H., Gibbs, A.J., Seigman, L. and Both, G.W., Virology, 156 (1987) 355.

    Google Scholar 

  12. Upton, C. and McFadden, G., J. Virol., 60 (1986) 920.

    Google Scholar 

  13. Otsuka, H. and Kit, S., Virology, 135 (1984) 316.

    Google Scholar 

  14. Robertson, G.R. and Whalley, J.M., Nucl. Acids Res., 16 (1989) 11303.

    Google Scholar 

  15. Keil, G., BFA Tübingen, personal communication.

  16. Davison, A.J. and Scott, J.E., J. Gen. Virol. 67 (1986) 1759.

    Google Scholar 

  17. Wagner, M.J., Sharp, J.A. and Summers, W.C., Proc. Natl. Acad. Sci. USA 78 (1981) 1441.

    Google Scholar 

  18. Needleman, S.B. and Wunsch, C.D., J. Mol. Biol., 48 (1970) 443.

    Google Scholar 

  19. Folkers, G., Krickl, S. and Trumpp, S., Arch. Pharm. (Weinheim), 322 (1989) 409.

    Google Scholar 

  20. Garnier, J., Osguthorpe, D.J. and Robson, B., J. Mol. Biol., 120 (1978) 97.

    Google Scholar 

  21. Levin, J.M., Robson, B. and Garnier, J., FEBS Lett., 205 (1986) 303.

    Google Scholar 

  22. Troeger, W. and Jung, G., unpublished (1987).

  23. Schulz, G.E., Elzinga, M., Marx, F. and Schirmer, R.H., Nature, 250 (1974) 120.

    Google Scholar 

  24. LaCour, T.F.M., Nyborg, J., Thirup, S. and Clark, F.C., EMBO J., 4 (1985) 2385.

    Google Scholar 

  25. Allen, F.H., Bellhard, S.H., Brice, M.D., Cartwright, G.A., Doubleway, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.A. and Watson, D.G., Acta Crystallogr., B 35 (1979) 2331.

    Google Scholar 

  26. Weiner, P.K. and Kollman, P.A., J. Comp. Chem., 2 (1981) 287.

    Google Scholar 

  27. Bone, R., Cheng, Y.-C. and Wolfenden, R., J. Biol. Chem., 261 (1986) 5731.

    Google Scholar 

  28. Arnold, J.R.P., Cheng, M.S., Cullis, P.M. and Lowe, G., J. Biol. Chem., 261 (1985) 1985.

    Google Scholar 

  29. Schulz, G.E., Schiltz, E., Tomasselli, A.G., Frank, R., Brune, M., Wittinghofer, A. and Schirmer, R.A., Eur. J. Biochem., 161 (1986) 127.

    Google Scholar 

  30. Shyy, Y.-J., Tian, G. and Tsai, M.-D., Biochemistry, 26 (1987) 6411.

    Google Scholar 

  31. Fry, D.C., Kyby, S.A. and Mildvan, A.S., Biochemistry, 24 (1985) 4680.

    Google Scholar 

  32. Tomasselli, A.G. and Noda, L.H., Eur. J. Biochem., 132 (1983) 109.

    Google Scholar 

  33. Barbacid, M., Annu. Rev. Biochem. 56, (1987) 770.

    Google Scholar 

  34. Rao, S.T. and Rossman, M.G., J. Mol. Biol. 76 (1973) 241.

    Google Scholar 

  35. Schulz, G.E. and Schirmer, R.H., Principles of Protein Structure, Springer, Heidelberg, 1979.

    Google Scholar 

  36. Hélène, C. and Lancelot, G. Progr. Biophys. Mol. Biol., 39 (1982) 1.

    Google Scholar 

  37. Folkers, G., Trumpp, S., Eger, K., Roth, H.J. and Schwöbel, W., Med. Sci. Res., 15 (1987) 633.

    Google Scholar 

  38. Folkers, G. and Trumpp, S., Med. Sci. Res., 15 (1987) 1495.

    Google Scholar 

  39. Dever, T.E., Glynias, M.J. and Merrick, W.C., Proc. Natl. Acad. Sci. USA, 84 (1987) 1814.

    Google Scholar 

  40. Field, H.J., Darby, G. and Wildy, P., J. Gen. Virol., 49 (1980) 115.

    Google Scholar 

  41. Marsden, H.S., Haarr, L. and Preston, C.M., J. Virol., 46 (1983) 434.

    Google Scholar 

  42. Hol, W.G., Progr. Biophys. Mol. Biol., 45 (1985) 149.

    Google Scholar 

  43. Kollman, P., Weiner, S.J., Case, D.A., Singh, U.C., Ghio, D., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  44. Karplus, M. and McCammon, A., Annu. Rev. Biochem., 52 (1983) 263.

    Google Scholar 

  45. Novotny, J., Rashin, A.A. and Bruccoleri, R.E., Proteins 4, (1988) 19.

    Google Scholar 

  46. Ramachandran, G.N. and Sasisekharan, V., Adv. Prot. Chem., 23 (1968) 283.

    Google Scholar 

  47. Baker, E.N. and Hubbard, R.E., Progr. Biophys. Mol. Biol. 44 (1984) 97.

    Google Scholar 

  48. Rashin, A.A. and Honig, B.H., J. Mol. Biol., 173 (1984) 503.

    Google Scholar 

  49. Larder, B.A., Derse, D., Cheng, Y.C. and Darby, G., J. Biol. Chem., 258 (1983) 2027.

    Google Scholar 

  50. Pai, E.F., Sachsenheimer, W. and Schirmer, R.H., J. Mol. Biol., 114 (1977) 37.

    Google Scholar 

  51. Ray, B.D., Rösch, P. and Rao, B.D.N., Biochemistry, 27 (1988) 8669.

    Google Scholar 

  52. Dreusike, D. and Schulz, G.E., FEBS Lett., 208 (1987) 301.

    Google Scholar 

  53. Egner, U., Tomasselli, A.G. and Schulz, G.E., J. Mol. Biol., 195 (1987) 649.

    Google Scholar 

  54. Jurnak, F., Science, 230 (1985) 32.

    Google Scholar 

  55. Folkers, G., Sakahara, K., Schwöbel, W. and Eger, K., Arch. Pharm. (Weinheim), 322 (1989) 395.

    Google Scholar 

  56. Fetzer, J., Ph.D. Thesis, University of Tübingen (1991).

  57. Hardy, L.W., Finer-Moore, J.S., Montfort, W.K., Jones, M.O., Santi, D.V. and Stroud, R.M., Science, 25 (1987) 448.

    Google Scholar 

  58. Loew, G., Nienow, J.R. and Poulsen, M., Mol. Pharmacol., 26 (1984) 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folkers, G., Trumpp-Kallmeyer, S., Gutbrod, O. et al. Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase. J Computer-Aided Mol Des 5, 385–404 (1991). https://doi.org/10.1007/BF00125660

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125660

Key words

Navigation