Skip to main content
Log in

Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Snyder (1989) has recently classified all smoothness terms which involve first-order derivatives of the flowfield u(x, t) and of the image grey-value function g(x, t). The physically plausible smoothness terms belonging to this class are known from the work of Horn and Schunck (1981) and Nagel (1987).

In this paper we discuss the possibilities of approximating the solutions to the minimization problems of Horn & Schunk (1981) and Nagel (1987). In particular, it is shown that these solutions exist, are unique, and depend continuously on the input data. These properties make it possible, while taking into consideration arbitrary models of the grey-value function, to approximate efficiently the (weak) solutions of the associated boundary-value problems in irregularly shaped domains (with a “sufficiently smooth” boundary) using finite elements.

Experiments with image sequences from synthetic as well as outdoor scenes show how the orientation dependency of the smoothness term in Nagel's approach influences the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson, E.H., and Bergen, J.R. 1985. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Amer. A. 2(2): 284–299.

    Google Scholar 

  • Adelson, E.H., and Bergen, J.R. 1986. The extraction of spatiotemporal energy in human and machine vision. Proc. Workshop on Motion: Repr. and Analysis, May 7–9, Charleston, South Carolina, pp. 151–155.

  • Aggarwal, J.K., and Nandhakumar, N. 1988. On the computation of motion from sequences of images—A review. Proc. IEEE 76(8): 917–935.

    Google Scholar 

  • Anandan, P. 1987. A unified perspective on computational techniques for the measurement of visual motion. Proc. Ist Intern. Conf. Comput. Vision, June 8–11, London, pp. 219–230.

  • Anandan, P. 1989. A computational framework and an algorithm for the measurement of visual motion. Intern. J. Comput. Vision 2(3): 283–310.

    Google Scholar 

  • Aubin, J.P. 1972. Approximation of elliptic boundary-value problems. Wiley: New York.

    Google Scholar 

  • Aubin, J.P. 1979. Applied functional analysis. Wiley: New York.

    Google Scholar 

  • Bertero, M. 1986. Regularization methods for linear inverse problems. Inverse Problems, G. Talenti (ed.), Lect Not. Math. 1225, pp. 52–112.

  • Bertero, M., Poggio, T.A., and Torre, V. 1988. Ill-posed problems in early vision. Proc. IEEE 76(8): 869–889.

    Google Scholar 

  • Buzbee, B.L., Golub, G.H., and Nielson, C.W. 1970. On direct methods for solving Poisson's equations. SIAM J. Numer. Anal. 7(4): 627–656.

    Google Scholar 

  • Buzbee, B.L., Dorr, F.W., George, J.A., and Golub, G.H. 1971. The direct solution of the diserete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8(4): 722–736.

    Google Scholar 

  • Ciarlet, P.G. 1978. The finite element method for elliptic problems. North-Holland: Amsterdam.

    Google Scholar 

  • Dengler, J. 1985. Methoden und Algorithmen zur Analyse bewegter Realweltszenen im Hinblick auf ein Blindenhilfesystem. Dissertation, Naturwissenschaftlich-Mathematische Gesamtfakultät der Univ. Heidelberg.

  • Enkelmann, W. 1985. Mehrgitterverfahren zur Ermittlung von Verschiebungsvektorfeldern in Bildfolgen. Dissertation, Fachbereich Informatik der Universitaet Hamburg.

  • Enkelmann, W. 1986. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences. Proc. Workshop Motion: Repr. Analysis, May 7–9, Charleston, South Carolina, pp. 81–87.

  • Enkelmann, W. 1988. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences. Comput. Vision. Graphics, Image Process. 43: 150–177.

    Google Scholar 

  • Fisher, D., Golub, G., Hald, O., Leiva, C., and Widlund, O. 1974. On Fourier-Toeplitz methods for separable elliptic problems. Math. Comput. 28(126): 349–368.

    Google Scholar 

  • Fleet, D.J., and Jepson, A.D. 1989. Computation of normal velocity from local phase information. Proc. IEEE Conf. Comput. Vision Patt. Recog.

  • Fogel, S.V. 1988. A nonlinear approach to the motion correspondence problem. Proc. 2nd Intern. Conf. Comput. Vision, Tarpon Springs, Florida, pp. 619–627.

  • Hackbusch, W. 1986. Theorie und Numerik elliptischer Differential-gleichungen. B.G. Teubner: Stuttgart.

    Google Scholar 

  • Hashimoto, M., and Sklansky, J. 1987. Multiple-order derivatives for detecting local image characteristics. Comput. Vision, Graph. Image Process. 39: 28–55.

    Google Scholar 

  • Heeger, D.J. 1987. Optical flow from spatiotemporal filters. Proc. Ist Intern. Conf. Comput. Vision, June 8–11, London, pp. 181–190.

  • Horn, B.K.P., and Schunck, B.G. 1981. Determining optical flow. Artificial Intelligence 17: 185–203.

    Google Scholar 

  • Hsu, Y.Z., Nagel, H.-H., and Rekers, G. 1984. New likelihood test methods for change detection in image sequences. Comput. Vision, Graphics, Image Process. 26: 73–106.

    Google Scholar 

  • Hutchinson, J., Koch, C., Luo, J., and Mead, C. 1988. Computing motion using analog and binary resistive networks. IEEE Computer, March, pp. 52–63.

  • Jacobson, L., and Wechsler, H. 1987. Derivation of optical flow using spatiotemporal-frequency approach. Comput. Vision. Graphics. Image Process. 38: 29–65.

    Google Scholar 

  • Locker, J., and Prenter, P.M. 1980. Regularization with differential operators: I. General theory. J. Math. Anal. Appl. 74: 504–529.

    Google Scholar 

  • Maybank, S. 1987. A theoretical study of optical flow. Ph.D. thesis, University of London, Birkbeck College, Dept. Computer Sci.

  • Meer, P., Baugher, E.S., and Rosenfeld, A. 1987. Frequency domain analysis and synthesis of image pyramid generating kernels. IEEE Trans. Patt. Anal. Mach. Intell. 9(4): 512–522.

    Google Scholar 

  • Nagel, H.-H. 1983a. Displacement vectors derived from second-order intensity variations in image sequences. Comput. Vision, Graphics, Image Process. 21: 85–117.

    Google Scholar 

  • Nagel, H.-H. 1983b. Constraints for the estimation of displacement vector fields from image sequences. Proc. 8th Intern. Joint Conf. Artif. Intell., Karlsruhe, pp. 945–951.

  • Nagel, H.-H. 1987. On the estimation of optical flow: relations between different approaches and some new results. Artificial Intelligence 33: 299–324.

    Google Scholar 

  • Nagel, H.-H. 1988. Image sequences—ten (octal) years—from phenomenology towards a theoretical foundation. Intern. J. Patt. Recog. Artif. Intell. 2(3): 459–483.

    Google Scholar 

  • Nagel, H.-H., and Enkelmann, W. 1983. Iterative estimation of displacement vector fields from TV-frame sequences. Proc. 2nd European Signal Process. Conf. (EUSIPCO-83). H.W. Schüssler (ed.), Erlangen, Sept. 12–16, pp. 299–302.

  • Nagel, H.-H., and Enkelmann, W. 1984. Berechnung von Verschiebungsvektorfeldern in Bildbereichen mit linienhaften oder partiell homogenen Grauwertverteilungen. DAGM-Symposium Mustererkennung 1984, W., Kropatsch (Hrsg.), Gras, 2–4 Okt., Informatłk-Fachberichte 87, Springer-Verlag, Berlin u.a., pp. 154–160.

    Google Scholar 

  • Nagel, H.-H., and Enkelmann, W. 1986. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. Trans. Patt. Analysis Mach. Intell. 8(5): 565–593.

    Google Scholar 

  • Rohr, K., and Schnörr, C. 1989. Ein Ansatz zur Entwicklung eines Verfahrens zur automatischen Ermittlung der Trajektorien sich bewegender Objekte in der Bildebene bei stationärer Kamera. Internal report Rohr/Snr-10174, June, Fraunhofer-Institut für Informations-und Datenverarbeitung (IITB), Karlsruhe.

    Google Scholar 

  • Schnörr, C. 1989. Zur Schätzung von Geschwindigkeitsvektorfeldern in Bildfolgen mit einer richtungsabhängigen Glattheitsforderung. Mustererkennung 1989 11. DAGM-Symposium, Hamburg, Oktober, Informatik-Fachberichte 219, H. Burkhardt, K.H. Höhne, and B. Neumann (Hrsg.), Springer-Verlag, pp. 294–301.

  • Schwarz, H.R. 1980. Methode der finiten Elemente, B.G. Teubner: Stuttgart.

    Google Scholar 

  • Simchony, T., and Chellapa, R. 1987. Direct analytical methods for solving Poisson equations in computer vision problems. Proc. IEEE Workshop Comput, Vision, Miami Beach, pp. 44–50.

  • Smirnov, W.I. 1976. Lenrgang der höheren Mathematik. Teil V, VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Snyder, M.A. 1989. On the mathematical foundations of smoothness constraints for the determination of optical flow and for surface reconstruction. Proc. Workshop Visual Motion, March 20–22, Irvine, CA, pp. 107–115.

  • Strang, G., and Fix, G.J. 1973. An analysis of the finite element method. Prentice-Hall: Englewood Cliffs, NJ.

    Google Scholar 

  • Swarztrauber, P.N. 1977. The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle. SIAM Review 19(3): 491–501.

    Google Scholar 

  • Terzopoulos, D. 1986. Image analysis using multigrid relaxation methods. IEEE Trans. Pattern Anal. Mach. Intell. 8(2): 129–139.

    Google Scholar 

  • Toet, A., Werkhoven, P., Nienhuis, B., Koenderink, J.J., and Lie, O Ying. 1987. Optic flow estimation by adaptive affine transformations. Dept. of Medical and Physiological Physics, State University of Utrecht, the Netherlands.

    Google Scholar 

  • Watson, A.B., and Ahumada, A.J. 1985. Model of human visualmotion sensing. J. Opt. Soc. Amer. A. 2(2): 322–342.

    Google Scholar 

  • Werkhoven, P., and Toet, A. 1986. The estimation of displacement vector fields by means of adaptive affine transformations. 8th Intern. Conf. Patt. Recog., Paris, October 27–31, 2: 798–800.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnörr, C. Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int J Comput Vision 6, 25–38 (1991). https://doi.org/10.1007/BF00127124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127124

Keywords

Navigation