Skip to main content
Log in

On the effects of different laser energy sources upon the iris of the pigmented and the albino rabbit

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The irides of pigmented and albino rabbits have been irradiated by a) a CW argon laser beam (exposure duration up to 1 s), b) a 1 ms pulses Nd:YAG laser and c) a 30 ns pulses Q-switched ruby laser. The immediate and long-term pathologies were analysed by scanning and transmission electron microscopy over a period of 13 months. At both the gross and ultrastructural levels, damage configuration may differ considerably, depending on the three modes of irradiation. For each source there are both thermal and mechanical damage components and the significance of mechanical effects increases with decreasing pulse duration for a constant pulse energy. In the argon experiments, tissue destruction is predominantly a consequence of heat, resulting from conduction and convection. The subsequent regeneration of tissue after such heat-induced trauma is fast. The effects of the Nd:YAG laser, at the irradiance levels used in the present study, are again predominantly of a thermal nature and are caused by heating and local evaporation. The pigmented and the nonpigmented iris epithelium are destroyed and widespread decay of the stroma occurs over some months. Such damage never results in full repair. The most prominent feature of Q-switched ruby laser irradiations is their independence of the iris pigment content. In contrast, at the energy levels studied, the argon laser is entirely ineffective, whilst the effect of the Nd:YAG laser is much reduced in the absence of pigment.

The consequences of these findings for the clinical applications of such lasers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R.K. & G.L. Miller. Outpatient argon laser iridectomies for angleclosure glaucoma. Adv. Ophthal. 34: 186–191 (1977).

    Google Scholar 

  2. Barnes, P.A. & K.E. Rieckhoff. Laser induced underwater sparks. Appl. Phys. Lett. 13: 282–284 (1968).

    Google Scholar 

  3. Bell, C.E. & J.A. Landt. Laser-induced high-pressure shock waves in water. Appl. Phys. Lett. 10: 46–48 (1967).

    Google Scholar 

  4. Bernhard, K., E. Van der Zypen & F. Fankhauser. Long-term studies about the ultrastructural changes of the iris after irradiation with the xenon-arc lamp (in preparation).

  5. Birngruber, R., F. Hillenkamp, F.H. Stefani & V.P. Gabel. Q-switched ruby laser damage of the rabbit eye lens. Adv. Ophthal. 34: 158–163 (1977)

    Google Scholar 

  6. Büchl, K., K. Hohla, R. Wienecke & S. Witowski. Investigation of the blast wave from a laser produced breakdown. Phys. Lett. 26A: 248–249 (1968).

    Google Scholar 

  7. Carome, E.F., C.E. Moeller & N.A. Clark. Intense rubylaser induced acoustic impulses in liquids. J. Acoust. Soc. Amer. 40: 1462–1466 (1966).

    Google Scholar 

  8. Geeraets, W.J., R. Geeraets & A.I. Goldman. Elektromagnetische Bestrahlungsverletzungen der Netzhaut. A. v. Graefes Arch. klin. exp. Ophthal. 200: 263–278 (1976).

    Google Scholar 

  9. Geeraets, W.J., W.T. Ham, Jr., R.C. Williams, H.A. Mueller, J. Burkhart, D. Guerry III & J.J. Vos. Laser versus light coagulator: a funduscopic and histological study of chorioretinal injury as a function of exposure time. Fed. Proc. Suppl. 14, 24: 48–61 (1965).

    Google Scholar 

  10. Goldman, A.I., W.T. Ham & H.A. Mueller. Ocular thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the Rhesus monkey. Exp. Eye Res. 24: 45–56 (1977).

    Google Scholar 

  11. Hallman, V.L., E.S. Perkins, G.K. Watts & C.B. Wheeler. Laser irradiation of the anterior segment of the eye - rabbit eyes. Exp. Eye Res. 7: 481–486 (1968).

    Google Scholar 

  12. Huber, G.K., E. Van der Zypen & F. Fankhauser. Langzeitbeobachtungen nach Bestrahlung der Iris mit dem Argonlaser (in press).

  13. Huber, G.K., E. Van der Zypen & F. Fankhauser. Longterm studies on the structural changes of the iris after irradiation with the argon laser (in preparation).

  14. Kocher, E.L., L. Tschudi, J. Steffen & G. Herziger. Dynamics of laser processing in transparent media. IEEE J. Quantum Electr. QE-8: 120–125 (1972).

    Google Scholar 

  15. Krasnov, M.M. Laseropuncture of anterior chamber angle in glaucoma. Am. J. Ophthal. 75: 674–678 (1973).

    Google Scholar 

  16. Krasnov, M.M. Q-switched laser goniopuncture. Arch. Ophthal. 92: 37–41 (1974).

    Google Scholar 

  17. Krasnov, M.M. Q-switched laser iridectomy and Q-switched laser goniopuncture. Adv. Ophthal. 34: 192–196 (1977).

    Google Scholar 

  18. Lauterborn, W. High speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett. 21: 27–29 (1972).

    Google Scholar 

  19. Lauterborn, W. Kavitation durch Laserlicht. Acustica 31: 51–78 (1974).

    Google Scholar 

  20. Lutz, Th. J. Steffen & F. Fankhauser. Laser für die Anwendung in der Ophtalmologie (in press).

  21. Marshall, J. Thermal and mechanical mechanisms in laser damage to the retina. Invest. Ophtal. 9: 97–115 (1970).

    Google Scholar 

  22. Marshall, J.F. Fankhauser, W. Lotmar & A. Roulier. Pathology of short pulse retinal photocoagulations using the Goldmann contact lens. A. v. Graefes Arch. klin. exp. Ophthal. 182: 154–169 (1971).

    Google Scholar 

  23. Marshall, J. & J. Mellerio. Pathological development of retinal laser photocoagulation. Exp. Eye Res. 6: 303–308 (1967).

    Google Scholar 

  24. Marshall, J. & J. Mellerio. Laser irradiation of retinal tissue. Br. Med. Bull. 26: 156–160 (1970).

    Google Scholar 

  25. Reynolds, E.W. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. 17: 208–212 (1963).

    Google Scholar 

  26. Van der Zypen, E., F. Fankhauser, H. Bebie & W. Lotmar. Ultrastructural damage to the iris caused by irradiation with intense light (in preparation).

  27. Watts, G.K. Ruby laser damage and pigmentation of the iris. Exp. Eye Res. 8: 470–476 (1969).

    Google Scholar 

  28. Watts, G.K. Biological effects of laser radiation on the iris. Ph. D. Thesis, London University (1970).

  29. Wheeler, C.B. Laser iridectomy. Phys. Med. Biol. 22: 1115–1135 (1977).

    Google Scholar 

  30. Zeldovich, Y.B. & Y. Raizer. Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York (1967).

    Google Scholar 

  31. Zweng, H.C., R.C. Rosan, R.R. Peabody, R.M. Shuman, A. Vassiliadis & R.C. Honey. Experimental Q-switched ruby laser retinal damage. Arch. Ophthal. 78: 634–640 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the Swiss National Science Foundation, the Commission for the Promotion of Scientific Research, and the ASUAG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Zypen, E., Fankhauser, F. & Bebie, H. On the effects of different laser energy sources upon the iris of the pigmented and the albino rabbit. Int Ophthalmol 1, 39–48 (1978). https://doi.org/10.1007/BF00133276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133276

Keywords

Navigation