Skip to main content
Log in

Retinoids and apoptosis in cancer therapy

  • Papers
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Retinoids serve as physiologic and pharmacologic mediators of proliferation, differentiation and apoptosis in normal and malignant cell types. All-trans-retinoic acid (tRA), a natural metabolite of vitamin A, induces differentiation and subsequent apoptosis in several types of malignant cells with immature phenotypes. Clinically, tRA has been approved for the treatment of patients with acute promyelocytic leukemia. Several synthetic retinoids induce apoptosis without differentiation in a variety of malignant epithelial cells in vitro. The synthetic derivative, N-(4-hydroxyphenyl)retinamide (HPR), shows significant promise as a chemo-preventive and therapeutic anti-cancer agent in light of its minimal toxicity and broad activity in experimental cancer models representing common human malignancies. This paper reviews the role of retinoids as mediators of differentiation and apoptosis in malignant cells, and the impact this activity could have on clinical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wohlbach SB, Howe PR. Tissue changes following deprivation of fat soluble vitamin A. J Exp Med 1925; 42: 753–777.

    Google Scholar 

  2. Gudas LJ, Sporn MB, Roberts AB. Cellular biology and biochemistry of the retinoids. In: Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids. New York: Raven Press 1994: 443–520.

    Google Scholar 

  3. Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids. New York: Raven Press 1994.

    Google Scholar 

  4. Sporn MB, Roberts AB. Role of retinoids in differentiation and carcinogenesis. J Natl Cancer Inst 1984; 73: 1381–1386.

    Google Scholar 

  5. Hong WK, Lotan R, eds. Retinoids in Oncology. New York: Marcel Dekker 1993.

    Google Scholar 

  6. Lippman SM, Kessler JF, Meyskens FL. Retinoids as preventive and therapeutic anticancer agents (Part I). Cancer Treat Rep 1987; 71: 391–405.

    Google Scholar 

  7. Lippman SM, Kessler JF, Meyskens FL. Retinoids as preventive and therapeutic anticancer agents (Part II). Cancer Treat Rep 1987; 71: 493–515.

    Google Scholar 

  8. Moon RC, Mehta RG, Rao KVN. Retinoids and cancer in experimental animals. In: Sporn MB, Roberts AB, Goodman DS,eds. The Retinoids. New York: Raven Press 1994: 573–595.

    Google Scholar 

  9. Hong WK, Itri LM. Retinoids and human cancer. In: Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids. New York: Raven Press 1994: 597–630.

    Google Scholar 

  10. Smith MA, Parkinson DR, Cheson BD, Friedman MA. Retinoids in cancer therapy. J Clin Oncol 1992; 10: 839–864.

    Google Scholar 

  11. Goodman DS. Vitamin A and retinoids in health and disease. N Engl J Med 1984; 310: 1023–1031.

    Google Scholar 

  12. Blaner WS, Olson JA. Retinol and retinoic acid metabolism. In: Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids. New York: Raven Press 1994: 229–255.

    Google Scholar 

  13. Leid M, Kastner P, Chambon P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biol Sci 1992; 17: 427–433.

    Google Scholar 

  14. Evans RM. The steroid and thyroid hormone receptor super-family. Science 1988; 240: 889–895.

    Google Scholar 

  15. Petkovich M, Brand NJ, Krust A, Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987; 330: 444–450.

    Google Scholar 

  16. Giguere V, Ong ES, Segui P, Evans RM. Identification of a receptor for the morphogen retinoic acid. Nature 1987; 330: 624–629.

    Google Scholar 

  17. Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 1990; 345: 224–229.

    Google Scholar 

  18. Brand N, Petkovich M, Krust A, et al. Identification of a second human retinoic acid receptor. Nature 1988; 332: 850–853.

    Google Scholar 

  19. Krust A, Kastner P, Petkovich M, Zelent A, Chambon P. A third human retinoic acid receptor, hRARy. Proc Natl Acad Sci USA 1989; 86: 5310–5314.

    Google Scholar 

  20. Mangelsdorf DJ, Borgmeyer U, Heyman RA, et al. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes & Devel 1992; 6: 329–344.

    Google Scholar 

  21. Leid M, Kastner P, Durand B, et al. Retinoic acid signal transduction pathways. Ann NY Acad Sci 1993; 684: 19–34.

    Google Scholar 

  22. Levin AA, Sturzenbecker LJ, Kazmer S, et al.9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRa. Nature 1992; 355: 359–361.

    Google Scholar 

  23. Heyman RA, Mangelsdorf DJ, Dyck JA, et al.9-cis retinoic acid is a high affmity ligand for the retinoid X receptor. Cell 1992; 68: 397–406.

    Google Scholar 

  24. Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991; 65: 1255–1266.

    Google Scholar 

  25. MangelsdorfDJ, Umesono K, Evans RM. The retinoid receptors. In: Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids. New York: Raven Press 1994: 319–349.

    Google Scholar 

  26. MangelsdorfDJ, Kliewer SA, Kakizuka A, Umesono K, Evans RM. Retinoid receptors. Recent Prog Horm Res 1993; 48: 99–121.

    Google Scholar 

  27. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes & Devel 1995; 9: 1033–1045.

    Google Scholar 

  28. Kliewer SA, Umesono K, MangelsdorfDJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid thyroid hormone and vitamin D3 signalling. Nature 1992; 355: 446–449.

    Google Scholar 

  29. Lotan R. Suppression of squamous cell carcinoma growth and differentiation by retinoids. Cancer Res 1994; 54: 1987s-1990s.

    Google Scholar 

  30. Gudas LJ. Retinoids, retinoid-responsive genes, cell differentiation, and cancer. Cell Growth & Differ 1992; 3: 655–662.

    Google Scholar 

  31. Lotan R. Retinoids and apoptosis: implications for cancer chemoprevention and therapy. J Natl Cancer Inst 1995; 87: 1655–1657.

    Google Scholar 

  32. Stone RM, Mayer RJ. Acute myeloid leukemia in adults. In: Abeloff MD, Armitage JO, Lichter AS, Niederhuber JE, eds. Clinical Oncology. New York: Churchill Livingston 1995: 1959–1976.

    Google Scholar 

  33. ChesonBD. The maturation of differentiation therapy. N Engl J Med 1992; 327: 422–424.

    Google Scholar 

  34. Warrell RP. All-trans-retinoic acid: what is it good for? J Clin Oncol 1992; 10: 1659–1661.

    Google Scholar 

  35. Breitman TR, Selonick SE, Collins SJ. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 1980; 77: 2936–2940.

    Google Scholar 

  36. Breitman TR, Collins SJ, Keene BR. Terminal differentiation of human promyelocytic leukemia cells in primary culture in response to retinoic acid. Blood 1981; 57: 1000–1004.

    Google Scholar 

  37. Huang ME, Ye Y-C, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.

    Google Scholar 

  38. Castaigne S, Chomienne C, Daniel MT, et al. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 1990; 76: 1704–1709.

    Google Scholar 

  39. Warrell RP, Frankel SR, Miller WH, et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 1991; 324: 1385–1393.

    Google Scholar 

  40. Fenaux P,LeDeley MC, Castaigne S, et al. Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. Blood 1993; 82: 3241–3249.

    Google Scholar 

  41. Frankel SR, Eardley A, Heller G, et al. All-trans retinoic acid for acute promyelocytic leukemia. Ann Intern Med 1994; 120: 278–286.

    Google Scholar 

  42. deThe H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor a gene to a novel transcribed locus. Nature 1990; 347: 558–561.

    Google Scholar 

  43. Kakizuka A, Miller WH, Umesono K, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    Google Scholar 

  44. deThe H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    Google Scholar 

  45. Chomienne C, Ballerini P, Balitrand N, et al. The retinoic acid receptor a gene is rearranged in retinoic acid-sensitive promyelocytic leukemias. Leukemia 1990; 4: 802–807.

    Google Scholar 

  46. Collins SJ, Robertson KA, Mueller L. Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RARα). Mol Cell Biol 1990; 10: 2154–2163.

    Google Scholar 

  47. Grignani F, Ferrucci PF, Testa U, et al. The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74: 423–431.

    Google Scholar 

  48. Chornienne C, Ballerini P, Balitrand N, et al. All-trans retinoic acid in acute promyelocytic leukemias II. In vitro studies: structure-function relationship. Blood 1990; 76: 1710–1717.

    Google Scholar 

  49. LoCoco F, Avvisati G, Diviero D, et al. Molecular evaluation of response to all-trans retinoic acid therapy in patients with acute promyelocytic leukemia. Blood 1991; 77: 1657–1659.

    Google Scholar 

  50. Martin SJ, Bradley JG, Cotter TG. HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis. Clin Exper Immunol 1990; 79: 448–453.

    Google Scholar 

  51. Solary E, Bertrand R, Pommier Y Apoptosis of human leukemia HL-60 cells induced to differentiate by phorbol ester treatment. Leukemia 1994; 8: 792–797.

    Google Scholar 

  52. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation: programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989; 83: 865–875.

    Google Scholar 

  53. Tosi P, Visani G, Gibellini D, et al. All-trans retinoic acid and induction of apoptosis in acute promyelocytic leukemia cells. Leukemia & Lymphoma 1994; 14: 503–507.

    Google Scholar 

  54. Bruel A, Benoit G, DeNay D, Brown S, Lanotte M. Distinct apoptotic responses in maturation sensitive and resistant t(15;17) acute promyelocytic leukemia NB4 cells. Leukemia 1995; 9: 1173–1184.

    Google Scholar 

  55. Park JR, Robertson K, Hickstein DD, Tsai S, Hockenberry DM, Collins SJ. Dysregulated bc1–2 expression inhibits apoptosis but not differentiation of retinoic acid-induced HL-60 granulocytes. Blood 1994; 84: 440–445.

    Google Scholar 

  56. Naumovski L, Cleary ML. Bc1–2 inhibits apoptosis associated with terminal differentiation of HL 60 myeloid leukemia cells. Blood 1994; 83: 2261–2267.

    Google Scholar 

  57. Noguchi K, Nakajima M, Naito M, Tsurno T. Inhibition by differentiation-inducing agents of wild-type p53-dependent apoptosis in HL-60 cells. Jap J Cancer Res 1995; 86: 217–223.

    Google Scholar 

  58. Nagy L,Thomazy VA,Shipley GL,et al. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol Cell Biol 1995; 15: 3540–3551.

    Google Scholar 

  59. Dawson MI,Elstner E, Kizaki M, et al. Myeloid differentiation mediated through retinoic acid receptor/retinoic X receptor (RXR) not RXR/RXR pathway. Blood 1994; 84: 446–452.

    Google Scholar 

  60. Parkinson DR, Simith MA. Retinoid therapy tor acute promyelocytic leukemia: a coming of age for the differentiation therapy of malignancy. Ann Intern Med 1992; 117: 338–340.

    Google Scholar 

  61. McCarthy DM, San Miguel JF, Freake HC, et al. 1,25 dihydroxyvitamin D3 inhibits proliferation of human promyelocytic leukaemia (HL-60) cells and induces monocytic-macrophage differentiation in HL-60 and normal bone marrow cells. Leukemia Res 1983; 7: 51–55.

    Google Scholar 

  62. Bunce CM, Wallington LA, Harrison P, Williams GR, Brown G. Treatment of HL60 cells with various combinations of retinoids and 1α,25 hydroxyvitamin D3 results in differentiation towards neutrophils or monocytes or a failure to differentiate and apoptosis. Leukemia 1995; 9: 410–418.

    Google Scholar 

  63. Wallington LA, Bunce CM, Durham J, Brown G. Particular combinations of signals, by retinoic acid and 1α,25 hydroxyvitamin D3, promote apoptosis of HL60 cells. Leukemia 1995 ; 9: 1185–1190.

    Google Scholar 

  64. Solary E, Bertrand R, Kohn KW, Pommier Y. Differential induction of apoptosis in undifferentiated and differentiated cells by DNA topoisomerase I and II inhibitors. Blood 1993; 81: 1359–1368.

    Google Scholar 

  65. McCarthy JV, Fernandes RS, Cotter TG. Increased resistance to apoptosis associated with HL-60 myeloid differentiation status. Anticancer Res 1994; 14: 2063–2072.

    Google Scholar 

  66. Sakashita A, Kizaki M, Pakkala S, et al. 9-cis-retinoic acid: effects on normal and leukemic hematopoiesis in vitro. Blood 1993; 81: 1009–1016.

    Google Scholar 

  67. Kizaki M, Nakaiima H, Mori S, et al. Novel retinoic acid, 9-cis retinoic acid, in combination with all-trans retinoic acid is an effective inducer of differentiation of retinoic acid-resistant HL-60 cells. Blood 1994; 83: 3289–3297.

    Google Scholar 

  68. Delia D, Aiello A, Lombardi L, et al. N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hematopoietic cell lines including those unresponsive to retinoic acid. Cancer Res 1993; 53: 6036–6041.

    Google Scholar 

  69. Kamzi SMI, Plante RK, Visconti V, Lau CY. Comparison of N-(4-hydroxyphenyl)retinamide and all-trans-retinoic acid in the regulation of retinoid receptor-mediated gene expression in human breast cancer cell lines. Cancer Res 1996; 56: 1056–1062.

    Google Scholar 

  70. Delia D, Aiello A, Formelli F, et al. Regulation of apoptosis induced by the retinoid N-(4hydroxyphenyl)retinamide and effects of deregulated bc1–2. Blood 1995; 85: 359–367.

    Google Scholar 

  71. Suedhoff T, Brickbichler PJ, Lee KN, Conway E, Patterson MK. Differential expression of transglutaminase in human erythroleukemia cells in response to recinoic acid. Cancer Res 1990; 50: 7830–7834.

    Google Scholar 

  72. Anzai N, Kawabata H, Hirama T, et al. Marked apoptosis if human myelomonocytic leukemia cell line P39: significance of cellular differentiation. Leukemia 1994; 8: 446–453.

    Google Scholar 

  73. Frankel SR, Warrell RP. Retinoids in leukemia and the myelodysplastic syndromes. In: Hong WK, Lotan R, eds. Retinoids in Oncology. New York: Marcel Dekker 1993: 147–178.

    Google Scholar 

  74. Ross AC, Hammerling UG. Retinoids and the immune system. In: Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids. New York: Raven Press 1994: 521–544.

    Google Scholar 

  75. Iwata M, Mukai M, Nakai Y, Iseki R. Retinoic acids inhibit activation-induced apoptosis in T cell hybridomas and thymocytes J Biol Chem 1992; 149: 3302–3308.

    Google Scholar 

  76. Yang Y, Mercap M, Ware CF, Ashwell JD. Fas and activation induced Fas ligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression by retinoic acid and glucocorticoids. J Exper Med 1995; 181: 1673–1682.

    Google Scholar 

  77. Yang Y, Vacchio MS, Ashwell JD. 9-cis-retinoic acid inhibits activation-driven T-cell apoptosis: implications for retinoid X receptor involvement in thymocyte development. Proc Natl Acad Sci USA 1993; 90: 6170–6174.

    Google Scholar 

  78. Yang Y, Minucci S, Ozato K, Heyman RA, Ashwell JD. Efficient inhibition of activation-induced Fas ligand up-regulation and T cell apoptosis by retinoids requires occupancy of both retinoid X receptors and retinoic acid receptors. J Biol Chem 1995; 270: 18672–18677.

    Google Scholar 

  79. Turley JM, Funakoshi S, RuscettiFW, et al. Growth inhibition and apoptosis of RL human B lymphoma cells by vitamin E succinate and retinoic acid: role for transforming growth factor β. Cell Growth & Differ 1995; 6: 655–663.

    Google Scholar 

  80. Massague J. The transforming growth factor-β family. Ann Rev Cell Biol 1990; 6: 597–641.

    Google Scholar 

  81. Chan L-NL, Zhang SL, Chan T-S. N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant T-lymphoid cells. Proc Am Assoc Cancer Res 1996; 37: 21.

    Google Scholar 

  82. Su I-J, Cheng A-L, Tsai T-F, Lay J-D. Retinoic acid-induced apoptosis and regression of a refractory Epstein-Barr virus containing T cell lymphoma expressing multidrug-resistance phenotypes. Brit J Haematol 1993; 85: 826–828.

    Google Scholar 

  83. Swisshelm K, Ryan K, Lee X, Tsou HC, Peacocke M, Sager R. Down-regulation of a retinoic acid receptor-β in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth &Differ1994; 5: 133–141.

    Google Scholar 

  84. van der Burg B, van der Leede BM, Kwakkenbox-Isbrucker L, Salverda S, de Laat SW, van der Saag PT. Retinoic acid resistance of estradiol-independent breast cancer cells coincides with diminished retinoic acid receptor function. Mol Cell Endocrinol 1993; 91: 149–157.

    Google Scholar 

  85. Hunter DJ, Manson JE, Colditz GA, et al., A prospective study of the intake of vitamins C, E, and A and the risk of breast cancer. N Engl J Med 1993; 329: 234–240.

    Google Scholar 

  86. Costa A. Breast cancer chemoprevention. Eur J Cancer 1993; 29: 589–592.

    Google Scholar 

  87. Seewaldt VL, Johnson BS, Parker MB, Collins SJ, Swisshelm K. Expression of retinoic acid receptor β mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells. Cell Growth & Differ 1995; 6: 1077–1088.

    Google Scholar 

  88. Liu Y, Wang HG, Li Y, et al. Retinoic acid receptor β mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol 1996; 16: 1138–1149.

    Google Scholar 

  89. James SY, Mackay AG, Colston KW. Vitamin D derivatives in combination with 9-cis-retinoic acid promote active cell death in breast cancer cells. J Mol Endocrinol 1995; 14: 391–394.

    Google Scholar 

  90. Pellegrini R, Mariotti A, Tagliabue E, et al. Modulation of markers associated with tumor aggressiveness in human breast cancer cell lines by N-(4-hydroxyphenyl)retinamide. Cell Growth & Differ 1995; 6: 863–869.

    Google Scholar 

  91. Formelli F, Clerici M, Campa T, et al. Five-year administration of fenretinide: pharmacokinetics and effects on plasma retinol concentrations. J Clin Oncol 1993; 11: 2036–2042.

    Google Scholar 

  92. Shao ZM, Dawson MI, Li XS, et al. P53 independent GO/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene 1995; 11: 493–504.

    Google Scholar 

  93. Jetten A, Nervi C, Vollberg TM. Control of squamous differentiation in tracheobronchial and epidermal epithelial cells: role of retinoids. J Natl Cancer Inst Monogr 1992; 13: 93–100.

    Google Scholar 

  94. Willett WC, MacMahon B. Diet and cancer-an overview. N Engl J Med 1984; 310: 633–638.

    Google Scholar 

  95. Gebert JF, Moghal N, Frangioni JV, Sugarbaker DJ, Neel BG. High frequency of retinoic acid receptor β abnormalities in human lung cancer. Oncogene 1991; 6: 1859–1868.

    Google Scholar 

  96. Geradts J, Chen J-Y, Russell EK, Yankaskas JR, Nieves L, Minna JD. Human lung cancer cell lines exhibit resistance to retinoic acid treatment. Cell Growth & Differ 1993; 4: 799–809.

    Google Scholar 

  97. Houle B, Rochette-Egly C, Bradley WEC. Tumor-suppressive effect of the retinoic acid receptor β in human epidermoid lung cancer cells. Proc Natl Acad Sci, USA 1993; 90: 985–989.

    Google Scholar 

  98. Kim Y-H, Dohi DF, Han GR, et al. Retinoid refractoriness occurs during lung carcinogenesis despite functional retinoid receptors. Cancer Res 1995; 55: 5603–5610.

    Google Scholar 

  99. Hong WK, Lippman SM, Itri LM, et al. Prevention of second primary tumors with isotretinoin in squamous carcinoma ofthe head and neck. N Engl J Med 1990; 323: 795–801.

    Google Scholar 

  100. Pastorino U, Infante M, Maioli M, et al. Adjuvant treatment of Stage I lung cancer with highdose vitamin A. J Clin Oncol 1993; 11: 1216–1222.

    Google Scholar 

  101. Arnold AM. Retinoids in lung cancer. In: Hong WK, Lotan R, eds. Retinoids in Oncology, New York: Marcel Dekker 1993: 223–244.

    Google Scholar 

  102. Doyle LA, Giangiulo D, Hussain H, Park H-J, Yen R-WC, Borges M. Differentiation of human variant small cell lung cancer cell lines to a classic morphology by retinoic acid. Cancer Res 1989; 49: 6745–6751.

    Google Scholar 

  103. Kalemkerian GP, Jasti RK, Celano P, Nelkin BD, Mabry M. All-trans-retinoic acid alters myc gene expression and inhibits in vitro progression in small cell lung cancer. Cell Growth & Differ 1994; 5: 55–60.

    Google Scholar 

  104. Kalemkerian GP, Slusher R, Ramalingam S, Gadgeel S, Mabry M. Growth inhibition and induction of apoptosis by fenretinide in small-cell lung cancer cell lines. J Natl Cancer Inst 1995; 87: 1674–1680.

    Google Scholar 

  105. Kalemkerian G, Slusher R, Ramalingam S, Mabry M. Fenretinide inhibits growth and potentiates etoposide cytotoxicity in small cell lung cancer. Proc Am Assoc Cancer Res 1995; 36: 510.

    Google Scholar 

  106. Zou CP, Lotan D, Lotan R. N-(4-hydroxyphenyl)retinamide induces apoptosis in human non small cell lung cancer cell lines. Proceedings 5th International Congress on Hormones and Cancer, Quebec 1995; Abstr99: pp120.

  107. Piacentini M, Petruzelli M, Oliverio S, Piredda L, Biedler J, Melino G. Phenotype-specific ‘tissue’ transglutaminase regulation in human neuroblastoma cells in response to retinoic acid: correlation with cell death by apoptosis. Int J Cancer 1992; 52: 271–278.

    Google Scholar 

  108. Piacentini M, Fesus L, Melino G. Multiple cell cycle access to the apoptotic death programme in human neuroblastoma cells. FEBS Letters 1993; 320: 150–154.

    Google Scholar 

  109. Davies PJA, Stein JP, Chiocca EA, et al. Retinoid-regulated expression of transglutaminases: links to the biochemistry of programmed cell death. In: Morriss-Kay G, ed. Retinoids in normal development and teratogenesis. Oxford: Oxford University Press 1992: 249–263.

    Google Scholar 

  110. Seeger RC, Brodeur GM, Sather H, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985; 313: 1111–1116.

    Google Scholar 

  111. Thiele CJ, Reynolds CP, Israel MA. Decreased expression of N-myc precedes retinoic acid induced morphological differentiation of human neuroblastoma. Nature 1985; 313:404–406.

    Google Scholar 

  112. DiVinci A, Geido E, Infusini E, Giaretti W. Neuroblastoma cell apoptosis induced by the synthetic retinoid N-(4-hydroxyphenyl)retinamide. Int J Cancer 1994; 59: 422–426.

    Google Scholar 

  113. Mariotti A, Marcora E, Bunone G, et al. N-(4-hydroxyphenyl)retinamide: a potent inducer of apoptosis in human neuroblastoma cells. J Natl Cancer Inst 1994; 86: 1245–1247.

    Google Scholar 

  114. Ponzoni M, Bocca P, Chiesa V, et al. Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma ceils: apoptosis versus, differentiation. Cancer Res 1995; 55: 853–861.

    Google Scholar 

  115. Armstrong RB, Ashenfelter KO, Eckhoff C, Levin AA, Shapiro SS. General and reproductive toxicology of retinoids. In: Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids. New York: Raven Press 1994: 545–572.

    Google Scholar 

  116. Baselga J, Dmitrovsky E. Human teratocarcinomas and retinoic acid-mediated tumor differentiation. In: Hong WK, Lotan R, eds. Retinoids in Oncology. New York: Marcel Dekker 1993: 285–298.

    Google Scholar 

  117. Strickland S, Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 1978; 15: 393–403.

    Google Scholar 

  118. Atencia R, Garcia-Sanz M, Unda F, Arechaga J. Apoptosis during retinoic acid-induced differentiation of F9 embryonal carcinoma cells. Exper Cell Res 1994; 214: 663–667.

    Google Scholar 

  119. Dony C, Kessel M, Gruss P. Post-transcriptional control of myc and p53 expression during differentiation of the embryonal carcinoma cell line F9. Nature 1985; 317: 636–639.

    Google Scholar 

  120. Slack RS, Skerjanc IS, Lach B, Craig J, Jardine K, McBurney MW. Cell differentiating into neuroectoderm undergo apoptosis in the absence of functional retinoblastoma family proteins. J Cell Biol 1995; 129: 779–788.

    Google Scholar 

  121. Boncinelli E, Simeone A, Acampora D, Mavilio F. HOX gene activation by retinoic acid. Trends Genet 1991; 7: 329–334.

    Google Scholar 

  122. Andrews PW. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 1984; 103: 285–293.

    Google Scholar 

  123. Lotan R. Retinoids and squamous cell differentiation. In: Hong WK, Lotan R, eds. Retinoids in Oncology. New York: Marcel Dekker 1993: 43–72.

    Google Scholar 

  124. Zhang L-X, Mills KJ, Dawson MI, Collins SJ, Jetten AM. Evidence for the involvement of retinoic acid receptor RARα-dependent signalling pathway in the induction of tissue transglutaminase and apoptosis by retinoids. J Biol Chem 1995; 270: 6022–6029.

    Google Scholar 

  125. Hong WK, Endicott J, Itri LM, et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med 1986; 315: 1501–1505.

    Google Scholar 

  126. Lotan R, Xu X-C, Lippman SM, et al. Suppression of retinoic acid receptor-β in premalignant oral lesions and its up-regulation by isotretinoin. N Engl J Med 1995; 332: 1405–1410.

    Google Scholar 

  127. Zou CP, Clifford JL, Xu XC, et al. Modulation by retinoic acid (RA) of squamous cell differentiation, cellular RA-binding proteins, and nuclear receptors in human head and neck squamous cell carcinoma cell lines. Cancer Res 1994; 54: 5479–5487.

    Google Scholar 

  128. Sacks PG, Oke V, Calkins DP, Vasey T, Terry NH. Effects of beta-all-trans retinoic acid on growth, proliferation and cell death in a multicellular tumor spheroid model for squamous carcinomas.J Cell Physiol 1990; 144: 237–243.

    Google Scholar 

  129. Sacks PG, Harris D, Chou TC. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: a rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995; 61: 409–415.

    Google Scholar 

  130. Lippman SM, DiGiovanna JJ. Retinoids in skin cancer. In: Hong WK, Lotan R, eds. Retinoids in Oncology. New York: Marcel Dekker 1993: 179–202.

    Google Scholar 

  131. Lippman SM Parkinson DR, Itri LM, et al. 13-cis-retinoic acid and interferon α-2a: effective combination therapy for advanced squamous cell carcinoma of the skin.J Natl Cancer Inst 1992; 84: 235–241.

    Google Scholar 

  132. Lippman SM, Kavanagh JJ, Paredes-Espinoza M, et al. 13-cis-retinoic acid plus interferon α-2a: highly active systemic therapy for squamous cell carcinoma of the cervix. J Natl Cancer Inst 1992; 84: 241–245.

    Google Scholar 

  133. Toma S,Palumbo R,Vincenti M,et al. Efficacy of recombinant alpha-interferon 2a and 13-cisretinoic acid in the treatment of squamos cell carcinoma. Ann Oncol 1994; 5: 463–465.

    Google Scholar 

  134. Dmitrovsky E, Bosl GJ. Active cancer therapy combining 13-cis-retinoic acid with interferon-α. J Natl Cancer Inst 1992 ; 84: 218–219.

    Google Scholar 

  135. Tester W Retinoids in bladder cancer. In: Hong WK, Lotan R, eds. Retinoids in Oncology. New York: Marcel Dekker 1993: 245–270.

    Google Scholar 

  136. Liebert M, Grossman HB, Lotan R. 4-HPR has growth suppressive and apoptotic properties in human bladder cancer. Proc Am Assoc Cancer Res 1996; 37: 387.

    Google Scholar 

  137. Tao W, Ossowski L, Waxman S, Platica M, Ferrari A. Retinoids induce apoptosis of androgen dependent and independent prostate cancer cells and androgens potentiate this effect. Proc Am Assoc Cancer Res 1996; 37: 202.

    Google Scholar 

  138. Thompson KL, Hwang M-S, Ahn C-H. Induction of p21/WAFl and apoptosis by an RXR selective retinoid in human prostate cancer cells. Proc Am Assoc Cancer Res 1996; 37: 230

    Google Scholar 

  139. Krupitza G, Hulla W, Harant H,et al. Retinoic acid inducced death of ovarian carcinoma cells correlates with c-myc stimulation. Int J Cancer 1995; 61: 649–657.

    Google Scholar 

  140. Formelli F, Cleris L. Synthetic retinoid fenretinide is effective against a human ovarian carcinoma xenograft and potentiates cisplatin activity. Cancer Res 1993; 53: 5374–5376.

    Google Scholar 

  141. Nakamura N, Shidoji Y, Yamada Y, Hatakeyama H, Moriwaki H, Muto Y. Induction of apoptosis by acyclic retinoid in the human hepatoma-derived cell line, HUH-7. Biochem Biophys Res Comm 1995; 207: 382–388.

    Google Scholar 

  142. Kraemer KH, DiGiovanna JJ, Moshell AN, Tarone RE, Peck GL. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N Engl J Med 1988; 318: 1633–1637.

    Google Scholar 

  143. Peck GL, DiGiovanna JJ, Sarnoff DS, et al. Treatment and prevention of basal cell carcinoma with oral isotretinoin. J Am Acad Dermatol 1988; 19: 176–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalemkerian, G.P., Ramnath, N. Retinoids and apoptosis in cancer therapy. Apoptosis 1, 11–24 (1996). https://doi.org/10.1007/BF00142074

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00142074

Key words

Navigation