Skip to main content
Log in

The cell biology of apoptosis: Evidence for the implication of mitochondria

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The apoptotic process can be subdivided into three phases: a death-stimulus-dependent heterogeneous induction phase, a common effector phase during which the central apoptotic executioner is activated, and a common degradation phase during which cells acquire the biochemical and morphological features of end-stage apoptosis. Recently, it has become clear that the central apoptosis executioner is dictated by cytoplasmic (non-nuclear) events and that nuclear changes that define apoptosis (chromatin condensation and oligonucleosomal DNA fragmentation) only become manifest beyond the point-of-no-return of apoptosis, during the late degradation phase. It appears that one obligatory event of the apoptotic cascade involves a characteristic change in mitochondrial function, namely the so-called mitochondrial permeability transition. Permeability transition leading to disruption of the mitochondrial transmembrane potential precedes nuclear and plasma membrane features of apoptosis. Induction of permeability transition in cells suffices to cause the full-blown picture of apoptosis. In vitro induction of permeability transition in isolated mitochondria provokes the release of a factor capable of inducing apoptotic changes in isolated nuclei. Permeability transition is subject to regulation by multiple endogenous effectors, including members of the bcl-2 gene family. Its inhibition by pharmacological agents or hyperexpression of Bcl-2 prevents apoptosis, indicating that PT is a central coordinating event of the apoptotic effector stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Google Scholar 

  2. Kroemer G, Petit PX, Zamzami N, Vayssière J-L, Mignotte B. The biochemistry of apoptosis. FASEB J 1995; 9: 1277–1287.

    Google Scholar 

  3. Cohen IJ, Duke RC, Fadok VA, Sellins KS. Apoptosis and programmed cell death in immunity. Ann Rev Immunol 1992; 10: 267–293.

    Google Scholar 

  4. Osborne BA, Smith SW, Liu Z-G, McLaughlin KA, Grimm L, Schwartz LM. Identification of genes induced during apoptosis in T cells. Immunol Rev 1994; 142: 301–320.

    Google Scholar 

  5. Weil M, Jacobson MD, Coles HSR, et al. Constitutive expression of the machinery for programme cell death. J Cell Biol 1996; 133: 1053–1059.

    Google Scholar 

  6. Kroemer G, Martínez-A C. Pharmacological inhibition of programmed lymphocyte cell death. Immunol Today 1994; 15: 235–242.

    Google Scholar 

  7. Kroemer G. The pharmacology of T cell apoptosis. Adv Immunol 1995; 58: 211–296.

    Google Scholar 

  8. Ishizaki Y, Cheng L, Mudge AW, Raff MC. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol Biol Cell 1995; 1995: 1443–1458.

    Google Scholar 

  9. Jacobson MD, Weil M, Raff MC. Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. J Cell Biol 1996; 133: 1041–1051.

    Google Scholar 

  10. Colombel M, Olsson CA, Ng P-Y Cancer Res 1992; 52: 4313–4319.

    Google Scholar 

  11. Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    Google Scholar 

  12. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345–347.

    Google Scholar 

  13. Norbury C, MacFarlande M, Fearnhead H, Cohen GM. CDC2 activation is not required for thymocyte apoptosis. Biochem Biophys Res Comm 1994; 202: 1400–1406.

    Google Scholar 

  14. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994; 15: 7–10.

    Google Scholar 

  15. Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    Google Scholar 

  16. Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182: 367–377.

    Google Scholar 

  17. Yao KS, Clayton M, O'Dwyer PJ. Apoptosis in human adenocarcinoma HT29 cells induced by exposure to hypoxia. JNCI 1995; 87: 117–122.

    Google Scholar 

  18. Shimizu S, Eguchi Y, Kosaka H, Kamlike W, Matsuda H, Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 1995; 374: 811–813.

    Google Scholar 

  19. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 1996; 379: 88–91.

    Google Scholar 

  20. Hug H, Enari M, Nagata S. No requirement of reactive oxygen intermediates in Fas-mediated apoptosis. FEBS Lett 1994; 351: 311–313.

    Google Scholar 

  21. Jacobson MD, Raff MC. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 1995; 374: 814–816.

    Google Scholar 

  22. McConkey DJ, Hartzell P, Nicotera P, Orrenius S. Calciumactivated DNA fragmentation kills immature thymocytes. FASEB J 1989; 3: 1843–1849.

    Google Scholar 

  23. McConkey DJ, Nicotera P, Orrenius S. Signalling and chromatin fragmentation in thymocyte apoptosis. Immunol Rev 1994; 142: 343–363.

    Google Scholar 

  24. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993; 259: 1769–1771.

    Google Scholar 

  25. Haimovitz-Friedman A, Kan C-C, Ehleitner D, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994; 180: 525–535.

    Google Scholar 

  26. Santana P, Peña LA, Haimovitz-Friedman A, et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are deficient in radiation-induced apoptosis. Cell 1996; 86: 189–199.

    Google Scholar 

  27. Marchetti P, Zamzami N, Susin SA, Patrice PX, Kroemer G. Apoptosis of cells lacking mitochondrial DNA. Apoptosis 1996; 1: 119–125.

    Google Scholar 

  28. Willie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–556.

    Google Scholar 

  29. Jacobson MD, Burne JF, Raff MC. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 1994; 13: 1899–1910.

    Google Scholar 

  30. Schulze-Osthoff K, Walczak H, Droge W, Krammer PH. Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol 1994; 127: 15–20.

    Google Scholar 

  31. Nakajima H, Golstein P, Henkart PA. The target cell nucleus is not required for cell-mediated granzymeor Fas-based cytotoxicity. J Exp Med 1995; 181: 1905–1909.

    Google Scholar 

  32. Peitsch MC, Mannherz HG, Tschopp J. The apoptotic endonucleases: cleaning up after cell death? Trends Cell Biol 1994; 4: 37–41.

    Google Scholar 

  33. Henkart PA. Apoptosis: O death, where is thy sting? J Immunol 1995; 154: 4905–4908.

    Google Scholar 

  34. Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell 1995; 82: 349–352.

    Google Scholar 

  35. Lazebnik YA, Takahashi A, Poirier GG, Kaufman SH, Earnshaw WC. Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. J Cell Sci 1995; S19: 41–49.

    Google Scholar 

  36. Henkart PA. ICE family proteases: Mediators of all apoptotic cell death? Immunity 1996; 4: 195–201.

    Google Scholar 

  37. Zamzami N, Marchetti P, Castedo M, et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661–1672.

    Google Scholar 

  38. Macho A, Castedo M, Marchetti P, et al. Mitochondrial dysfunctions in circulating T lymphocytes from human immunodeficiency virus-1 carriers. Blood 1995; 86: 2481–2487.

    Google Scholar 

  39. Castedo M, Macho A, Zamzami N, et al. Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo. Eur J Immunol 1995; 25: 3277–3284.

    Google Scholar 

  40. Zamzami N, Susin SA, Marchetti P, et al. Mitochondrial control of nuclear apoptosis. J Exp Med 1996; 183: 1533–1544.

    Google Scholar 

  41. Zamzami N, Marchetti P, Castedo M, et al. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett 1996; 384: 53–57.

    Google Scholar 

  42. Marchetti P, Susin SA, Decaudin D, et al. Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA. Cancer Res 1996; 56: 2033–2038.

    Google Scholar 

  43. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184: 1155–1160.

    Google Scholar 

  44. Marchetti P, Hirsch T, Zamzami N, et al. Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 1996; 157: 4830–4836.

    Google Scholar 

  45. Castedo M, Hirsch T, Susin SA, et al. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 1996; 157: 512–521.

    Google Scholar 

  46. Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184: 1331–1341.

    Google Scholar 

  47. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1996; in press.

  48. Vayssière J-L, Petit PX, Risler Y, Mignotte B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci USA 1994; 91: 11752–11756.

    Google Scholar 

  49. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 1994; 79: 353–364.

    Google Scholar 

  50. Petit PX, LeCoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML. Alterations of mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 1995; 130: 157–167.

    Google Scholar 

  51. Cossarizza A, Franceschi C, Monti D, et al. Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells: the role of mitochondria. Exp Cell Res 1995; 220: 232–240.

    Google Scholar 

  52. Polla BS, Kantengwa S, Francois D, et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA 1996; 93: 6458–6463.

    Google Scholar 

  53. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptic program in cell-free extracts: requirement for dATP and cytochrome C. Cell 1996; 86: 147–157.

    Google Scholar 

  54. Krippner A, Matsuno-Yagi A, Gottlieb RA, Babior BM. Loss of function of cytochrome c in Jurkat cells undergoing Fasmediated apoptosis. J Biol Chem 1996; 271: 21629–21636.

    Google Scholar 

  55. Martin SJ, Newmeyer DD, Mathisa S, et al. Cell-free reconstitution of Fas-, UV radiation and ceramide-induced apoptosis. EMBO J 1995; 14: 5191–5200.

    Google Scholar 

  56. Attardi G, Schatz G. Biogenesis of mitochondria. Ann Rev Cell Biol 1988; 4: 289–333.

    Google Scholar 

  57. Zoratti M, Szabò, I. The mitochondrial permeability transition. Biochem Biophys Acta Rev Biomembr 1995; 1241: 139–176.

    Google Scholar 

  58. Bernardi P, Petronilli V. The permeability transition pore as a mitochondrial calcium release channel; a critical appraisal. J Bioenerg Biomembr 1996; 28: 129–136.

    Google Scholar 

  59. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. Interactions of cyclophilin with mitochondrial inner membrane and regulation of the permeability transition pore, a cyclosporin A-sensitive channel. J Biol Chem 1996; 271: 2185–2192.

    Google Scholar 

  60. Marchetti P, Decaudin D, Macho A, et al. Redox regulation of apoptosis: impact of thiol redoxidation on mitochondrial function. Eur J Immunol 1997; in press.

  61. Zhivotovsky B, Gahm A, Ankarcrona M, Nicotera P, Orrenius S. Multiple proteases are involved in thymocyte apoptosis. Exp Cell Res 1995; 221: 404–412.

    Google Scholar 

  62. Fearnhead HO, Dinsdale D, Cohen GM. An interleukin-1 beta-converting enzyme-like protease is a common mediator of apoptosis in thymocytes. FEBS Lett 1995; 375: 283–288.

    Google Scholar 

  63. Zhu HJ, Fearnhead HO, Cohen GM. An ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells. FEBS Lett 1995; 374: 303–308.

    Google Scholar 

  64. Pronk GJ, Ramer K, Amiri P, Williams LT. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science 1996; 271: 808–810.

    Google Scholar 

  65. Cain K, Inayathussain SH, Couet C, Cohen GM. A cleavage site-directed inhibitor of interleukin 1 beta-converting enzyme-like proteases inhibits apoptosis in primary cultures of rat hepatocytes. Biochem J 1996; 314: 27–32.

    Google Scholar 

  66. Slee EA, Zhu HJ, Chow SC, Macfarlane M, Nicholson DW, Cohen GM. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.fmk) inhibits apoptosis by blocking the processing of CPP32. Biochem J 1996; 315: 21–24.

    Google Scholar 

  67. Patel T, Gores GJ, Kaufman SH. The role of proteases during apoptosis. 1996; 10: 587–597.

    Google Scholar 

  68. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1995; 124: 1–6.

    Google Scholar 

  69. Cory S. Regulation of lymphocyte survival by the Bcl-2 gene family. Ann Rev Immunol 1995; 13: 513–543.

    Google Scholar 

  70. Yang E, Korsmeyer SJ. Molecular Thanatopsis: A discourse on the Bcl-2 family and cell death. Blood 1996; 88: 386–401.

    Google Scholar 

  71. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 53: 4701–4714.

    Google Scholar 

  72. Lithgow T, Vandriel R, Bertram JF, Strasser A. The protein product of the oncogene Bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane. Cell Growth Differ 1994; 5: 411–417.

    Google Scholar 

  73. Janiak F, Leber B, Andrews DW. Assembly of Bcl-2 into microsomal and outer mitochondrial membranes. J Biol Chem 1994; 269: 9842–9849.

    Google Scholar 

  74. Riparbelli MG, Callaini G, Tripodi SA, Cintorino M, Tosi P, Dallai R. Localization of the Bcl-2 protein to the outer mitochondrial membrane by electron microscopy. Exp Cell Res 1995; 221: 363–369.

    Google Scholar 

  75. Tanaka S, Saito K, Reed JC. Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2β protein restores function as a regulator of cell survival. J Biol Chem 1993; 268: 10920–10926.

    Google Scholar 

  76. Nguyen M, Branton PE, Walton PA, Oltvai ZN, Korsmeyer SJ, Shore GC. Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J Biol Chem 1994; 269: 16521–16524.

    Google Scholar 

  77. Hanada M, Aimesempe C, Sato T, Reed JC. Structure-function analysis of Bcl-2 protein identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 1995; 270: 11962–11969.

    Google Scholar 

  78. Greenhalf W, Stephan C, Chaudhuri B. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Sacharomyces cerevisiae. FEBS Lett 1996; 380: 169–175.

    Google Scholar 

  79. Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW. Bcl-2 mutants with restricted subcellular localization reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 1996; 15: 4130–4141.

    Google Scholar 

  80. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 1992; 89: 3170–3174.

    Google Scholar 

  81. Carayon P, Portier M, Dussossoy D, et al. Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical species. Blood 1996; 87: 3170–3178.

    Google Scholar 

  82. Kane DJ, Sarafian TA, Anton R, et al. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993; 262: 1274–1277.

    Google Scholar 

  83. Reed DJ, Savage MK. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochem Biophys Acta 1995; 1271: 43–50.

    Google Scholar 

  84. Walker JE, Runswick MJ. The mitochondrial transport protein superfamily. J Bioenerg Biomembr 1993; 25: 435–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by ARC, ANRS, CNRS, FRM, Fondation de France, INSERM, NATO, Ligue contre le Cancer. Ministère de la Recherche et de l'Industrie (France), and Sidaction (to GK). SAS receives a fellowship from the Spanish Government (Ministerio de Ciencia y Educación).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susin, S.A., Zamzami, N. & Kroemer, G. The cell biology of apoptosis: Evidence for the implication of mitochondria. Apoptosis 1, 231–242 (1996). https://doi.org/10.1007/BF00143316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143316

Key words

Navigation