Skip to main content
Log in

Elliptic genera, involutions, and homogeneous spin manifolds

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the normalized elliptic genera Φ(X)=ϕ(X)/εk/2 for 4k-dimensional homogeneous spin manifolds X and show that they are constant as modular functions. The basic tool is a reduction formula relating Φ(X) to that of the self-intersection of the fixed point set of an involution γ on X. When Φ(X) is a constant it equals the signature of X. We derive a general formula for sign(G/H), GH compact Lie groups, and determine its value in some cases by making use of the theory of involutions in compact Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. Conf. on Elliptic Curves and Modular Forms in Algebraic Topology, Princeton, September 1986; Lecture Notes in Maths 1326, Springer-Verlag, Berlin, Heidelberg, New York, 1988.

  2. Adams, J. F., Lectures on Lie Groups, Benjamin, New York, 1969.

    Google Scholar 

  3. Atiyah, M. F., and Hirzebruch, F., ‘Spin-manifolds and group actions’, in Memoires dédiés à Georges de Rham, Springer-Verlag, Berlin, Heidelberg, New York, 1970, pp. 18–28.

    Google Scholar 

  4. Atiyah, M. F., and Singer, I. M., ‘The index of elliptic operators III’, Ann. Math. 87 (1996), 546–604.

    Google Scholar 

  5. Borel, A. and Hirzebruch, F., ‘Characteristic classes and homogeneous spaces I’, Amer. J. Math. 80 (1958), 458–538.

    Google Scholar 

  6. Borel, A. and Hirzebruch, F., ‘Characteristic classes and homogeneous spaces II’, Amer. J. Math. 81 (1959), 315–382.

    Google Scholar 

  7. Bliss, J. G., Moody, R. V., and Pianzola, A., Appendix to this article, Geom. Dedicata 35 (1990), 345–351 (this issue).

    Google Scholar 

  8. Borel, A. and de Siebenthal, J., ‘Les sous-groupes fermés de rang maximum des groupes de Lie clos’, Comment Math. Helv. 23 (1949), 200–221.

    Google Scholar 

  9. Bott, R., ‘Vector fields and characteristic numbers’, Michigan Math. J. 14 (1967), 231–244.

    Google Scholar 

  10. Bott, R. and Taubes, C., ‘On the rigidity theorem of Witten’, J. Amer. Math. Soc. 2 (1989), 137–186.

    Google Scholar 

  11. Bourbaki, N., Groupes et algèbres de Lie, Chap. IV, V, VI. Hermann, Paris, 1968.

    Google Scholar 

  12. Golubitsky, M. and Guillemin, V., Stable Mappings and Their Singularities, Springer-Verlag, Berlin, Heidelberg, New York, 1973.

    Google Scholar 

  13. Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    Google Scholar 

  14. Hirzebruch, F., Topological Methods in Algebraic Geometry (3rd edn, with appendices by R. L. E. Schwarzenberger and A. Borel), Springer-Verlag, Berlin, Heidelberg, New York, 1966.

    Google Scholar 

  15. Hirzebruch, F., ‘Involutionen auf Mannigfaltigkeiten’ in Proc. Conf. on Transformation Groups, New Orleans 1967, Springer-Verlag, Berlin, Heidelberg, New York, 1968, pp. 148–166.

    Google Scholar 

  16. Hirzebruch, F., ‘Elliptic genera of level N for complex manifolds’, in Differential Geometrical Methods in Theoretical Physics, Kluwer, Dordrecht, 1988, pp. 37–63.

    Google Scholar 

  17. Hopf, H. and Samelson, H., ‘Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen’, Comment. Math. Helv. 13 (1940/41), 240–251.

    Google Scholar 

  18. Jänich, K. and Ossa, E., ‘On the signature of an involution’, Topology 8 (1969), 27–30.

    Google Scholar 

  19. Kleiman, S. L., ‘The transversality of a general translate’, Comp. Math. 38 (1974), 287–297.

    Google Scholar 

  20. Landweber, P. S., ‘Elliptic genera: An introductory overview’, in reference [1], pp. 1–10.

  21. Milnor, J., ‘Spin structures on manifolds’, L'Enseignement Math. 9 (1963), 198–203.

    Google Scholar 

  22. Ochanine, S., ‘Sur les genres multiplicatifs définis par des intégrales elliptiques’, Topology 26 (1987), 143–151.

    Google Scholar 

  23. Ochanine, S., ‘Genres elliptiques equivariants’, in [1], p. 107–122.

  24. Selbach, M., Klassifikationstheorie halbeinfacher algebraischer Gruppen, Bonner Mathematische Schriften 83, Bonn, 1976.

  25. Springer, T. A., ‘The classification of involutions of simple algebraic groups’, Journal Fac. Sci. University of Tokyo, Sec. IA, 34 (1987), 655–670.

    Google Scholar 

  26. Tits, J., ‘Sur la classification des groupes algébriques simples’, C.R.A.S. Paris 249 (1959), 1438–1440.

    Google Scholar 

  27. Tits, J., ‘Classification of algebraic semisimple groups’, Proc. Symp. Pure Math. 9 (1966), 33–62.

    Google Scholar 

  28. Witten, E., ‘The index of the Dirac operator in loop space’, in [1], p. 161–181.

  29. Zagier, D., ‘Note on the Landweber-Stong Elliptic genus’, in [1], p. 216–224.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Jacques Tits on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirzebruch, F., Slodowy, P. Elliptic genera, involutions, and homogeneous spin manifolds. Geom Dedicata 35, 309–343 (1990). https://doi.org/10.1007/BF00147351

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00147351

Keywords

Navigation