Skip to main content
Log in

The formation of flare loops by magnetic reconnection and chromospheric ablation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Slow-mode shocks produced by reconnection in the corona can provide the thermal energy necessary to sustain flare loops for many hours. These slow shocks have a complex structure because strong thermal conduction along field lines dissociates the shocks into conduction fronts and isothermal subshocks. Heat conducted along field lines mapping from the subshocks to the chromosphere ablates chromospheric plasma and thereby creates the hot flare loops and associated flare ribbons. Here we combine a non-coplanar compressible reconnection theory with simple scaling arguments for ablation and radiative cooling, and predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G the temperature of the hot flare loops decreases from 1.2 × 107 K to 4.0 × 106 K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0% to 86% of the total field. When the perpendicular component exceeds 86% of the total field or when the altitude of the reconnection site exceeds 106km, flare loops no longer occur. Shock enhanced radiative cooling triggers the formation of cool Hα flare loops with predicted densities of ≈ 1013 cm−3, and a small gap of ≈ 103 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. V.: 1975, J. Comp. Phys. 17, 246.

    Google Scholar 

  • Antiochos, S. K.: 1980, Astrophys. J. 236, 270.

    Google Scholar 

  • Antiochos, S. K. and Sturrock, P. A.: 1978, Astrophys. J. 220, 1137.

    Google Scholar 

  • Bruzek, A.: 1964, Astrophys. J. 140, 746.

    Google Scholar 

  • Carmichael, H.: 1964, in W. N. Hess (ed.), AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, p.451.

  • Cargill, P. J. and Priest, E. R.: 1983, Astrophys. J. 266, 383.

    Google Scholar 

  • Chevalier, R. A. and Theys, J. C: 1975, Astrophys. J. 195, 53.

    Google Scholar 

  • Coroniti, F. V.: 1970, J. Plasma Phys. 4, 265.

    Google Scholar 

  • Cox, D. P.: 1972, Astrophys. J. 178, 143.

    Google Scholar 

  • Craig, I. J. D. and McClymont, A. N.: 1976, Solar Phys. 50, 133.

    Google Scholar 

  • Craig, I. J. D. and McClymont, A. N.: 1981, Solar Phys. 70, 97.

    Google Scholar 

  • Edmiston, J. P. and Kennel, C. F.: 1986, J. Geophys. Res. 91, 1361.

    Google Scholar 

  • Ferraro, V. C. A. and Plumpton, C.: 1966, An Introduction to Magneto-Fluid Mechanics, Clarendon Press, Oxford, p. 101.

    Google Scholar 

  • Forbes, T. G.: 1986, Astrophys. J. 305, 553.

    Google Scholar 

  • Forbes, T. G. and Malherbe, J. M: 1986, Astrophys. J. 302, L67.

    Google Scholar 

  • Forbes, T. G. and Priest, E. R.: 1983, Solar Phys. 88, 211.

    Google Scholar 

  • Heinzel, P. and Karlický, M.: 1987, Solar Phys. 110, 343.

    Google Scholar 

  • Hildner, E.: 1974, Solar Phys. 35, 123.

    Google Scholar 

  • Hirayama, T.: 1974, Solar Phys. 34, 323.

    Google Scholar 

  • Jakimiec, J., Sylwester, B., Sylwester, J., Lemen, J. R., Mewe, R., Bentley, R. D., Peres, G., Serio, S., and Schrijver J.: 1987, in V. E. Stepanov and V. N. Obridko (eds.), Solar Maximum Analysis, VNU Science Press, Utrecht, p. 91.

    Google Scholar 

  • Kennel, C. F.: 1987, J. Geophys. Res. 92, 13427.

    Google Scholar 

  • Kleczek, J.: 1964, in W. N. Hess (ed.), AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, p. 77.

  • Kopp, R. A. and Pneuman, G. W.: 1976, Solar Phys. 50, 85.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon Press, London, p. 342.

    Google Scholar 

  • Leroy, J. L., Bommier, V., and Sahal-Brechot, S.: 1984, Astron. Astrophys. 131, 33.

    Google Scholar 

  • Lin, H.-A., Lin, R. P., and Kane, S. R.: 1985, Solar Phys. 99, 263.

    Google Scholar 

  • Malherbe, J. M.: 1987, Thèse de Doctorat d'État des Sciences, University de Paris VII, p. 154.

  • Malherbe, J. M., Forbes, T. G., and Priest, E. R.: 1984, The Hydromagnetics of the Sun, ESA SP-220, p. 119.

  • Martin, S. F.: 1979, Solar Phys. 64, 165.

    Google Scholar 

  • McCabe, M.: 1973, Solar Phys. 30, 439.

    Google Scholar 

  • McClymont, A. N. and Canfield, R. C.: 1983, Astrophys. J. 265, 497.

    Google Scholar 

  • Morishita, H.: 1985, Tokyo Astron. Bull. 272, 3123.

    Google Scholar 

  • Nolte, J. T., Gerassimenko, M., Krieger, A. S., and Petrasso, R. D.: 1979, Solar Phys. 62, 123.

    Google Scholar 

  • Ohki, K.: 1975, Solar Phys. 45, 435.

    Google Scholar 

  • Petschek, H. E.: 1964, in W. N. Hess (ed.), AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, p. 425.

  • Podgorny, A. I. and Syrovatsky, S. L.: 1981, Soviet J. Plasma Phys. 7, 580 (English translation).

    Google Scholar 

  • Poletto, G. and Kopp, R. A.: 1986, in D. F. Neidig (ed.), The Lower Atmosphere of Solar Flares, National Solar Observatories, Sacramento Peak, NM, p. 453.

    Google Scholar 

  • Priest, E. R.: 1982a, Solar Phys. 86, 33.

    Google Scholar 

  • Priest, E. R.: 1982b, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland, p. 73.

    Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.

    Google Scholar 

  • Rust, D. M. and Bar, V.: 1973, Solar Phys. 33, 445.

    Google Scholar 

  • Schmieder, B., Forbes, T. G., Malherbe, J. M., and Machado, M. E.: 1987, Astrophys. J. 317, 956.

    Google Scholar 

  • Scholer, M.: 1987, J. Geophys. Res. 92, 12425.

    Google Scholar 

  • Soward, A. M.: 1982, J. Plasma Phys. 28, 415.

    Google Scholar 

  • Soward, A. M. and Priest, E. R.: 1982, J. Plasma Phys. 28, 335.

    Google Scholar 

  • Sturrock, P. A.: 1966, Nature 211, 695.

    Google Scholar 

  • Sturrock, P. A.: 1968, in K. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 471.

  • Sturrock, P. A.: 1972, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA, p.3.

  • Švestka, Z. F., Fontenla, J. M., Machado, M. E., Martin, S. F., Neidig, D. F., and Poletto, G.: 1987, Solar Phys. 108, 237.

    Google Scholar 

  • Ugai, M.: 1987, Geophys. Res. Letters 14, 103.

    Google Scholar 

  • Withbroe, G. L.: 1978, Astrophys. J. 225, 641.

    Google Scholar 

  • Yang, C.-K. and Sonnerup, B. U. Ö.: 1976, Astrophys. J. 206, 570.

    Google Scholar 

  • Zirin, H.: 1986, in D. F. Neidig (ed.), The Lower Atmosphere of Solar Flares, National Solar Observatories, Sacramento Peak, NM, p. 78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forbes, T.G., Malherbe, J.M. & Priest, E.R. The formation of flare loops by magnetic reconnection and chromospheric ablation. Sol Phys 120, 285–307 (1989). https://doi.org/10.1007/BF00159881

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00159881

Keywords

Navigation